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The response of a model olfactory system to a single odorant is quantified
by interconnecting three separate stimulus-response relationships.
Together, these relationships encompass the deposition of odorant
molecules onto an olfactory organ, their movement to the dendrite of the
olfactory receptor neuron, their subsequent induction of action potentials,
and the processing of induced and spontaneous action potentials by the
central nervous system, resulting in perception and a behavioral response.
Phenomena discussed within the context of the model include the
behavioral threshold, central summation of responses from a number of
olfactory neurons, and the effect of organ shape on olfactory detection.

The intent of the model is to provide a quantitative conceptual
framework for designing and interpreting experiments relating sensory
input to perception and behavior. Its utility is particularly evident for
insect olfaction since it enables insect sex pheromone behavioral thresholds
to be estimated from the literature when bioassays or electrophysiological
studies are not possible. It also derives a physiologically meaningful
method for comparing behavioral thresholds among different animals, and
permits comparisons of different kinds of behavioral responses in the same
species. Vertebrate olfaction is treated briefly in a discussion of the effect
of sniffing on the threshold of detection.

1. Introduction

When the olfactory organ of an animal is stimulated, a number of chemical
and physiological events must occur before the central nervous system
(CNS) perceives an odor. Ultimately, the perceived intensity of the sensa-
tion is influenced by many factors, including the rate of adsorption of
odorant to the exposed surfaces of the olfactory organ, the rate of transport
from these surfaces to the underlying olfactory receptor neurons, the
number and sensitivity of the receptor neurons, and the procedure by which
the CNS evaluates their output. The quantitation of such influences is a
123
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central problem in olfactory psychophysics (Neuhaus, 1953; Stuiver, 1958;
Teichman, 1959; Kafka, 1970; Kaissling, 1971; Menco, 1977; Hornung
& Mozell, 1977; Moulton, 1977).

An example from insects illustrates the kinds of questions that a quantita-
tive treatment of olfaction must answer. Many insects emit volatile
chemicals called sex pheromones that selectively attract and sexually excite
individuals of the opposite sex. A major concern in the implementation of
insect control procedures by use of such chemicals is the minimum detect-
able concentration, which is usually measured behaviorally (Mankin et al.,
1980). In some instances, it would be of practical benefit if the threshold
could be estimated from easily obtained physiological and morphological
parameters rather than by bioassay. However, the great diversity in the
size and shape of insect antennae makes it difficult to determine which
morphological parameters have the greatest importance. The silkworm
moth, Bombyx mori L., has a large, feathery antenna, for example, while
the cabbage looper, Trichoplusia ni (Hiibner), has a thread-like antenna.
Yet, both insects have comparable thresholds for their respective sex
pheromones, 10°-10* molecules/cm® (Kaissling & Priesner, 1970; Sower,
Gaston & Shorey, 1971). Thus, a question is raised immediately whether
these morphological differences affect the threshold. This and similar ques-
tions led us to develop the model derived below.

The derivation is obtained by combining two stimulus-response relation-
ships from the psychophysical, chemical engineering, and neurophysiologi-
cal literature. One is a power function relating the activity of an olfactory
receptor neuron to physical, physiological, and morphometrical parameters
that determine the stimulus intensity. The other is an equation from signal
detection theory that defines a criterion by which a stimulus of low intensity
can be distinguished from a background of spontaneous neural activity. In
examining the derivation, the reader should bear in mind that we do not
intend to derive either the most simple or the most complete model possible,
nor to describe the discrimination process. For example, the power function
describing the response of an olfactory neuron can be simplified to a linear
equation when the odorant concentration is near threshold. The response
also can be described in terms of a hyperbolic function, a more general
polynomial function, or a Weber-Fechner logarithmic function (Rushton,
1961). Portions of the model are applicable to contact chemoreception,
particularly those parts dealing with the processing of information after it
is transduced by the sensors (see e.g. Fredman, 1975). This aspect will not
be discussed, however.

In later sections the model is expanded by incorporating a measure of
how intensely an above-threshold olfactory stimulus is perceived. The
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expanded version is applied to bioassays that measure the magnitude of
different types of behavioral response to the same olfactory stimulus,
showing the underlying commonalities in the different dose-response
curves. For example, it is shown how bioassays measuring percentage
response and those measuring response latency can be compared directly.

A concluding section discusses the types of olfactory systems for which
the model is likely to have utility and considers how variations in the
exposed surface area of an olfactory neuron, the number of olfactory
neurons stimulated, and the spontaneous activity of olfactory neurons affect
the behavioral threshold. The vertebrate olfactory threshold is considered
briefly. A number of applications of the model to insect olfaction are
discussed in Mankin & Mayer (1983).

2. Model
The first olfactory system to be modeled in this report is schematized in

Fig. 1. It comprises a total of n independent sensors connected to a central
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F1G. 1. Schematic of a model olfactory system comprising a total of n sensors, a central
processing system, and a sensing switch. Symbols: AP (stimulus-activated pulses); SP (spon-
taneous pulses).

processor that can be in either a quiescent or an excitatory state, as signified
by a sensing switch. An expanded version is considered later in section 6.
For simplicity, we limit the initial system to three activities: (1) the sensors
independently transmit odorant-activated pulses as well as spontaneous
pulses to the central processor; (2) the central processor, analogous to a
locus of converging neurons in the brain, counts the pulses from the sensors



126 R. W. MANKIN AND M. S. MAYER

and determines whether the total rate of incoming pulses exceeds some
fixed response criterion level; and (3) when the rate exceeds the criterion
level the processor switches from a quiescent to an excitatory state that
decays back to quiescence after the stimulus ceases. The first two actions
of the model system are represented by an equation that expresses the rate
of emission of pulses in terms of the stimulus intensity. The third action is
represented by another equation giving the response criterion in terms of
the rate of arrival of pulses at the central processor. These are conceptually
separate processes and are considered separately in the next two sections.

Before deriving the relationship between the stimulus and the pulse rate
in the model system, it is necessary to consider briefly the physical units
of stimulus intensity. To provide more physiological meaningfulness, we
represent the stimulus intensity for this report by the rate of adsorption of
odorant to a number of independent sensors rather than by the conventional
units of odorant concentration. In a real olfactory system, the rate of
adsorption to an individual sensor depends primarily on the odorant con-
centration, but it also depends somewhat on the turbulence in the stimulus
airflow and the interactions between the odorant molecules and the sensor
surface molecules (Judeikis & Stewart, 1976). Such interactions include
van der Waal forces and hydrogen bonding (Regnier & Goodwin, 1977).
Because of the complexity of these factors, the rate of adsorption cannot
be calculated from adsorption theory, but experimentally measured rates
of deposition to surfaces can usually be fitted to

m, = CSK, (1)

where m, (units: moles/sec) is the mean rate of adsorption to a sensor
surface of area S (cm?), C (moles/cm?) is the mean odorant concentration
in the stimulus air, and K (cm/sec) is an empirically measured deposition
velocity of odorant to the sensor. The deposition velocity is a commonly
measured parameter in studies of gas and pollutant adsorption (Thom,
1968; McMahon & Denison, 1979).

The difficulties of measuring the deposition velocity of odorant to an
olfactory organ are alleviated somewhat by the fact that adsorption is a
nonspecific process. The deposition velocity of most chemicals varies within
the limits, 0-1-10 cm/sec (McMahon & Denison, 1979), which is relatively
narrow compared to the 10°-10*-fold variations of odorant concentration
normally occurring in the atmosphere. We have measured the deposition
velocity of two different sex pheromones to several different insect antennae
and found values that lay within even narrower limits, 0-2 to 6 cm/sec
(Mankin & Mayer, unpublished data). It is thus convenient and realistic
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to assume that K =1 cm/sec in the model system. Our rationale for rep-
resenting the stimulus intensity in terms of m, rather than C will become
more evident as the derivation proceeds. Except where explicitly stated,
the remainder of this report deals with the model system rather than a real
olfactory system.

3. Response of a Model Sensor

Because power function have been very successful as approximate rep-
resentations of psychophysical relationships (Stevens, 1975), we adopt the
following equation to describe the rate of pulse emission by a sensor in
terms of the rate of adsorption of odorant:

M, =by(M, +b,)", ()

where M, (number/interval) is the mean number of pulses elicited from an
independently acting sensor during the test interval in which the pulses are
monitored, b;, b, and b are regression constants (number/interval), and
M, (number/interval) is the mean number of odorant molecules adsorbed
by the sensor per interval. The mean rate of adsorption to the sensor is
related to the odorant concentration in the stimulus air by the equation:

M, =N,t; CSK, 3)

where N, is Avogadro’s number (6-02 % 10**/mole) and ¢ (sec) is the
duration of the test interval. The quantities, N, and ¢, are included in
equation (3) solely to express M, in normalized units of number per interval
rather than the units of moles per second. This conversion simplifies the
later parts of the derivation. The quantities, 5; and b,, in equation (2) are
constants in the model but it should be noted that they may vary with time
in a real olfactory system (see e.g. Kaissling, 1976; Koshland, 1980).

Equation (2) is difficult to interpret as it stands, but it can be converted
into a form where the parameters have a more intuitive meaning. Two
such parameters are a noise factor, representing the spontaneous activity
of the cell, and a response transduction (gain) factor, representing the rate
of pulses produced by a single stimulus molecule. To perform the conversion
we apply the binomial theorem or, less restrictively, a Taylor series
expansion to obtain:

M, =b1b3 +bb:1b5 "M, +b(b—1)b1b5>M2/2+. . .. 4)
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This can be simplified by noting that if M, nears zero the M Z and higher-
order terms become negligible. It is convenient to define

q=bb5", (5)

where g is a kind of response compliance, the average number of pulses
activated by an odorant molecule adsorbed to the sensor, and

Ms = b lb g’ (6)
where M, is the spontaneous activity of the sensor. Then,
M, = M +qM.,. 7

Equation (7) can be interpreted as showing that at low stimulus intensities
the rate of emission of pulses by a sensor is the sum of a rate of spontaneous
emission, M, plus a rate of stimulus-activated emission,

M, =qMa9 (8)

where M, (number/interval) is the mean number of odorant-activated
pulses emitted per interval by a sensor. Necessarily, equation (8) is valid
only when M,, the rate of adsorption, nears zero.

Inspection of equation (2) in view of equations (5) and (6) provides
insight into how the variation in the response of a sensor to different
odorants affects the magnitude of the regression coefficients in the power
function. The coefficient, b, is determined primarily by the units for
stimulus and response (in this case number per interval). The ratio, q/M,,
is equal to b/b,, so it is appropriate to interpret b as a correlate of the
intrinsic response or gain of the sensor and b, as a correlate of the intrinsic
noise. It follows, then, that if a sensor is differentially sensitive to two
odorants, the stimulus-response power functions for each odorant should
have different values of the exponent, 5. The higher value of » should
occur for the odorant to which the sensor is more responsive. It also follows
that a sensor with a higher rate of spontaneous activity should have a
larger b,.

4. The Response Criterion for Detection of a Stimulus

In the next phase of the modeled detection process, a central processor
analyzes the incoming pulses from the sensors. The central processor
monitors the total rate of incoming pulses, and sets the sensing switch
activating the excitatory state on the basis of a fixed response criterion.
The concept of a response criterion has its origins in signal detection theory
(Green & Swets, 1974). The theory examines a hypothetical detector system
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with a large number of sensors that send both induced and spontaneous
pulses to a central processor, the output from no single sensor being
dominant. According to the central limit theorem, the distribution of the
rate of spontaneous pulses inputted to the processor tends toward normality.
Consequently there is a probability, p, that the rate of spontaneous input
pulses exceeds u +Zo, where u is the mean rate of spontaneous input
pulses, o is the standard deviation, and Z is the normal correlate of p, i.e.
it is the horizontal axis on a plot of the normal distribution. For example,
when Z =1, p =0-1587, and when Z =2, p =0-0228.

Now, suppose that the hypothetical detector receives spontaneous noise
pulses at the mean rate of o+ 0. If the detector has a measured probability,
Do, Of registering a signal during an interval when no stimulus is presented,
then it can be inferred that there is a critical normal correlate of p,, call it
Z,, such that

Mc =M0+ZOO'(). (9)

The quantity, u., is the response criterion, the rate of input at which the
detector first enters the excitatory state. Pirenne & Marriot (1959) proposed
a similar criterion for vision. The response criterion cannot be measured
directly, but it can be estimated by determining the mean and variance of
the input noise along with the probability of a spontaneous response.

To apply equation (9) to the model olfactory system, we can estimate
the mean and variance of the noise pulses carried to the central processor
by noting that a series of pulses from either a single neuron or a group of
nerve fibers can be modeled approximately by a Poisson distribution (Cox
& Lewis, 1966; Kaissling, 1971). Because the sensors are analogous to
peripheral olfactory receptor neurons, we assume here that the output from
each sensor is described by the Poisson equation:

P, (x) =M exp (—M)/x! (10)
where M; is the spontaneous activity (see equation (6)), and pys,(x) is the
probability that a particular integral number, x =0, 1, 2, ...., of spon-

taneous pulses occurs during a given interval when the mean number per
interval is M;. The Poisson distribution has two properties that simplify
the model calculations: (1) the mean and variance of the distribution are
equal (Cox & Lewis, 1966); and (2) the distribution of the sum of two
Poisson distributions with means, M; and M,, is a Poisson distribution
with the mean, M, + M, (Box, Hunter & Hunter, 1978). Thus, if n,, is the
number of intervals in which exactly x pulses arrive at the central processor,
n is the number of sensors, and N is the total number of intervals, then the
probability that x spontaneous pulses reaches the central processor during



130 R. W. MANKIN AND M. S. MAYER

a given interval is

nt,x/N=pnM,(x)- (11)

The mean and variance of the rate of input pulses is nM,.

An estimate of the response criterion for the central processor of the
model system is obtained as follows. First, three quantities are measured:
the number of sensors, n; the mean rate of emission of spontaneous pulses
from a sensor, M;; and the probability, po, that the sensing switch (see Fig.
1) activates the excitatory state spontaneously. From p,, Z, is determined
by reference to a table of the normal distribution. Then the criterion for
activation of the excitatory state is calculated from the equation:

M= nMs +ZO(nMs)1/2s (12)

which is a special case of equation (9). To keep the units consistent, it is
necessary to assign the units of (number of pulses/interval)’? to Z.

While this procedure specifies a practical method for estimating an
animal’s response criterion, nothing is specified about how the animal itself
would determine the mean noise level if it did process threshold stimuli
according to equation (12). It is not difficult to imagine several plausible
averaging mechanisms, however. For example, in a model of bacterial
chemotaxis MacNab & Koshland (1972) postulated that bacteria have a
memory. An attractant—chemoreceptor complex activates two different
enzymes that catalyze respectively the synthesis and degradation of a
regulator chemical, x, at different rates. The concentration of x must rise
above a critical level before the bacterium responds. Presumably, the central
processor could operate similarly, with a change in the spontaneous signal
level resulting in the change of a mean level of some critical chemical, e.g.
a neurotransmitter. The response criterion would be analogous to the
critical level of x in the MacNab-Koshland model.

5. Analysis of Factors Affecting the Excitatory State

The central processor can be switched into an excitatory state either by
a level of spontaneous pulses that exceeds the criterion or by an odorant
concentration of some minimum intensity, 7 (moles/ cm?), hereafter called
the switch threshold. Because of its analogy with the behavioral threshold,
the switch threshold is one of the most important parameters in the model.

To obtain a relationship determining T from parameters of the model,
it can be assumed that T is the minimum concentration of odorant at which
the value of M, in equation (8) for a single sensor is sufficiently large that
the total input to the central processor from all the sensors rises above the



A MODEL OF ODORANT INTENSITY 131

response criterion. In other words when C = T, then M, = M,, where M, is
the minimum rate of induced pulses needed to obtain the excitatory state.
According to equation (12), the minimum rate of induced pulses is

M, =Zo(nM,)"*/n = Zo(M,/n)">. (13)

(Note that if the sensors are stimulated selectively, equation 13 must be
modified as discussed in the Appendix.) To relate M, to the threshold, we
first combine equations (3) and (8), obtaining

N.C =M,/qt:SK. (14)

Since, by definition, C = T when M, = M,, equation (14) can be rewritten
in terms of M, and combined with equation (13), yielding

N,T =Zy(M,/n)""*/qtSK, (15)

which expresses the threshold for switching to the excitatory state in terms
of phenomenological parameters.

6. Responses to Above-Threshold Stimuli

Heretofore the excitatory state of the model system has been analogized
as a two-way switch, but a more realistic representation of olfactory percep-
tion would grade the intensity of the excitatory state in proportion to the
stimulus magnitude. It is convenient to assume that the proportionality is
described via a power function of the form frequently used to represent
the psychophysical response by humans to stimuli of a number of different
modalities (Stevens, 1975):

I=1Iy(C—7)° (16)

where I is the intensity of the excitatory state, C (moles/ cm?) is the odorant
concentation, 7 (moles/cm?) is the threshold, which either can be estimated
from T in equation (15) or calculated as a regression constant, and I, and
B are regression constants.

It is of interest to generalize further by considering an example where
the excitatory intensity cannot be monitored directly, but the system exhibits
an observable response that is graded with respect to stimulus intensity.
Although equation (16) cannot be determined in this case, two important
parameters, 7 and B3, can be estimated from the power function for the
observable response. Ideally, if the observable response, R, is proportional
to the excitatory intensity, then

R =Ry(C—-17)° amn
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where R is a regression constant. The two exponents should be equivalent
because both the excitatory state and the observable response are induced
by the same sensors, and the exponent is primarily a measure of the sensor
transduction characteristics (section 3). In a real olfactory system, however,
a number of physiological factors could interfere with the expression of
the observable response, or the response might be so complex that it would
be only marginally indicative of excitatory intensity. These effects would
tend to decrease the exponent in the observable-response power function
relative to the exponent in equation (16). Sensory adaptation would increase
both exponents without changing their relative order. Consequently, if the
excitatory exponent were unknown, the observable-response exponent
could be set as a lower limit for the perception exponent. Similarly, the
observable-response threshold cannot be lower than the excitatory thresh-
old, so in the absence of knowledge about the excitatory threshold, the
observable-response threshold could be set as an upper limit.

7. Comparisons with Previous Analyses

There are two formal differences between the proposed model and most
previous treatments of olfaction: the form of the mathematical representa-
tion for the basic stimulus-response relationship of olfactory acuity, and
the assumptions about the process of adsorption to the olfactory organ.
For perspective, we will consider the differences briefly in this section, but
it should be noted that these issues have little bearing on the overall validity
of the model.

In contrast to equation (2), most previous analyses of olfaction (e.g.
Tucker, 1963; Kaissling, 1969) have represented the rate of emission of
action potentials in terms of a hyperbolic equation. Kaissling (1971) has
also considered a modification of the hyperbolic equation that takes into
account the electrical properties of the olfactory neuron. The resultant
equation is flatter than the hyperbolic curve and closely resembles the
power function of equation (2). Another frequently hypothesized form of
stimulus-response relationship is a Weber-Fechner logarithmic function
(Rushton, 1961; O’Connell, 1975; Den Otter, 1977). In the paper that
follows, all three curves are considered for the case of pheromonal olfaction
in B. mori. Each of them provides a good fit to the data, so the curves
cannot be distinguished statistically. Apparently, the differences in the
choice of stimulus-response function have little effect on the predictions
of the model.

By contrast, the differences in the assumptions about the deposition of
odorant molecules to the olfactory organ result in considerable differences
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in the predictions of deposition velocity. Adam & Delbriick (1968) and
Murray (1977) assume that every odorant molecule which contacts the
olfactory organ is adsorbed, while it is assumed in the model that the
adsorption rate is determined by equation (1). The effect of choosing one
assumption over the other can be calculated by referring to equation (47)
in Adam & Delbriick (1968):

J=0-5CSD/r, (18)

where J (moles/sec) is the rate of adsorption of odorant to a cylinder of
area S (cm”), D (cm?/sec) is the diffusion coefficient of the odorant and r
(cm) is the radius of the cylinder. To estimate what this means in terms of
deposition velocity, we note that according to equation (3),

K=M,/N,;CS=J/CS. (19)
Next, comparing equation (18) with equation (19), we see that
K =0-5D/r. (20)

The magnitude predicted by Adam & Delbriick (1968) for the deposition
velocity of odorant to an insect olfactory sensillum thus can be calculated
from the radius of an insect olfactory sensillum of about 10™* cm (Kaissling,
1971), and the diffusion coefficient, which for most odorants falls within
the range 0-01 to 0-1 cm?/sec (Mankin et al., 1980). The predicted deposi-
tion velocity is about 10°-10% cm/sec, two to three orders of magnitude
above experimentally measured values in the literature (McMahon &
Denison, 1979).

Because of this difference in the way the model and Adam & Delbriick
(1968) treat the adsorption process, the two analyses make different predic-
tions concerning the effects of shape on olfactory acuity. If the deposition
velocity is high, an adsorbent surface collects all the odorant in its vicinity,
which results in a concentration gradient that increases the deposition
velocity. The gradient is inversely proportional to the radius of curvature
of the surface, so a slender, thin object would be predicted to have a greater
deposition velocity than a blunt, thick object. However, there is a negligible
gradient around a surface adsorbing at a low deposition velocity of 1 cm/sec,
so the difference in shape would be of little importance relative to the
difference in surface area. Kaissling (1971) predicted from Adam &
Delbriick’s work that a feathery insect antenna should be a more efficient
odorant filter than a thread-like antenna. However, if K is about 1 cm/sec
for both types of antenna, then any differences in filtering ability would
be based on differences in surface area (which indeed are usually consider-
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able). This difference in predictions undoubtedly can be resolved experi-
mentally.

8. Olfactory Systems To Which The Model Is Applicable

Theoretically, by analogizing an olfactory neuron as a sensor, an action
potential as a pulse, a part of the CNS as the central processor, and the
behavioral response as an indication of a central excitatory state, we can
apply the model to any real olfactory system. However, the extreme
complexity of real systems belies the simplicity of the original assumptions
in the model, and some of the parameters may be difficult to determine.
Two parameters in particular are extremely difficult to measure in most
vertebrates: the number of olfactory neurons sensitive to the odorant being
tested, and the effective surface area from which a cell collects the odorant.
When these parameters cannot be determined for a vertebrate system, the
model can still be applied to make some general predictions about the
limits of detectability and the important physical parameters involved in
detection.

An example where the model can be applied to vertebrate olfaction is
a current controversy about the effects of nasal air flow on the odor intensity
perceived by humans (Schneider et al., 1963; Rehn, 1978; Teghtsoonian
et al., 1979). The model clarifies some of the issues involved. According
to equation (1), the velocity of the carrier air is of only minor importance;
the rate of adsorption of odorant, which is relatively insensitive to velocity,
is the primary parameter. As the speed of the flow increases, however, the
level of turbulence also increases (Judeikis & Stewart, 1976), enhancing
the mixing of odorant-laden air with air just above the olfactory epithelium.
This effect may account for the finding that response intensity increases up
to a point with increases in the stimulus flow rate. It also may explain why
many animals sniff when they are exposed to low concentrations of an
odorant. Several quick sniffs generate much more turbulence than a single,
low-speed inhalation, consequently increasing the supply of odorant to the
olfactory epithelium.

One requirement restricting the applicability of the model is that
stimulus-response relationships must be established for both the behavior
of the whole animal and the electrophysiological response of single,
peripheral olfactory neurons. The animal must be able to communicate its
detection of an odor, or else respond behaviorally in some reflexive or
near-reflexive manner. If an identical behavioral response is also elicited
by other nonolfactory stimuli, it may be difficult to ascertain whether a
spontaneous behavioral response in the absence of the odor is not an
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artifact due to inadvertent stimulation by the nonolfactory cue. This prob-
lem may result in the overestimation of po. Also, the constants in the power
function of equation (2) are not strictly constant in a real olfactory system.
The magnitude of these constants in the power function of a single olfactory
neuron can vary with time and the pattern of previous stimulation because
of adaptation. Such differences are magnified in comparisons among
different olfactory neurons. Even neurons that respond to the same odorant
exhibit considerable variation in their response curves (O’Connell, 1975).
Thus, equation (2) can be applied to real olfactory systems only if the
responses of a number of neurons are averaged in tests conducted under
a fixed experimental paradigm.

There are, however, many animals for which a number of the conditions
of the model can be satisfied. The Lepidoptera are particularly suitable for
analysis. The number of olfactory neurons on a moth antenna and the
effective surface from which a neuron collects odorant can be estimated
relatively easily because the morphology of a sensillum often indicates the
functionality of its olfactory neurons. Inspection of morphologically distinct
sensilla by microscopy thus allows an estimate of the number of olfactory
receptor neurons of a given type.

Another advantage provided by insects is that, in many species, the
neurons in a majority of the olfactory sensilla are sensitive to one or more
of the sex pheromones for that species, and the behavioral response to the
sex pheromone tends to be stereotypical. The pheromonal response has
been studied in detail in several insects, as well as the morphology and
electrophysiology of sensilla that bear pheromone-sensitive olfactory
neurons, so many of the parameters in the model can be estimated from
values already in the literature.

Bearing in mind the above caveats about applicability, we now conclude
by mentioning some phenomenological relationships derived in the model
that can (and should) be tested experimentally.

The predictions in equation (15) about the relationship between the
behavioral threshold and the number and surface area of olfactory receptor
neurons are in general agreement with the pattern implemented through
natural selection in a number of animals with highly developed olfactory
acuity. These macrosmatic animals have olfactory organs of large surface
area with a large number of olfactory neurons, just as equation (15) predicts
would be optimal. Data from insect studies pertinent to the predictions
about behavioral thresholds are presented in Mankin & Mayer (1982).

The effect on the threshold when a change occurs in the spontaneous
activity of the olfactory receptor neurons, and the effect of a change in
the probability that the central excitatory state becomes activated
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spontaneously are shown in Fig. 2, where the parameters q, ¢, and K, are
setto 1, and n and S are set arbitrarily to 10* and 107 cm?, respectively.
According to Fig. 2, an evolutionarily optimized olfactory neuron would
have a low spontaneous activity, although this has not been experimentally
demonstrated. One shortcoming of the model is that, in an optimized
system, the probability of spontaneous activation of behavior would be
large (Fig. 2). This does not take into account other factors that work
toward minimizing spontaneous behavioral responses in the absence of
stimuli, e.g. predation of unconcealed animals searching for odorant
sources, and the energy requirements of searching forays. However, the
model does indicate that a low rate of spontaneous activation, i.e. a
minimized spontaneous behavioral response, theoretically can occur
without significantly raising the threshold.

The expansion of the model to above-threshold responses shows how
different bioassays might be compared even when they measure different
kinds of response. In the case of insect pheromone bioassays for example,
one behavioural response could be percentage wing flutter (orthokinesis)
and the other, percentage upwind flight (anemotaxis). The criterion that
anemotaxis must occur is more stringent than the criterion of orthokinesis,



A MODEL OF ODORANT INTENSITY 137

so the anemotactic threshold should be higher than the orthokinetic
threshold, both being higher than the perceptual threshold. Both responses
are amenable to bioassays that could test these predictions. Similarly, the
exponent for the anemotactic response should be smaller than the exponent
for the orthokinetic response, both being slightly smaller than the exponent
for perception. If two different bioassays of the same odor yielded different
values for the threshold and the exponent in the response power function,
then it could be expected that the response measure most indicative of
perception was the one that yielded the power function with the highest
exponent and the lowest threshold. The latter point is discussed in Mankin
& Mayer (1983).
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APPENDIX
Summation of Responses from Single Olfactory Cells

There are two cases to consider in examining how a change in the number
of sensors stimulated affects the switch threshold. If all the sensors are
stimulated but the number of sensors changes, then the effect on the
threshold is described by equation (15). However, if the number of sensors,
n, remains constant while the number stimulated, n’, changes, then equation
(13) must be modified to

M, =Zo(nM,)"*/n". (A1)
As a result, equation 15 converts to
N.T =Zo(nM,)""?/qt, SKn'. (A2)

The primary difference difference between equation (15) and equation
(A2) is that, in the former, the threshold is inversely proportional to the
square root of the number of sensors, and in the latter, the threshold is
inversely proportional to the number of stimulated sensors. There is no
practical difference between the two equations because they both are highly
simplified, imprecise representations of central nervous processes.



