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Abstract

A simple image differentiation method for the identification of systemically diseased chickens
was developed and cross-system validated using two different multispectral imaging systems. The
first system acquired images at three wavelengths, 460 nm, 540 nm, and 700 nm, for a batch of 164
wholesome and 176 systemically diseased chicken carcasses. The second system acquired images at
four wavelengths, 488 nm, 540 nm, 580 nm, and 610 nm, for a second batch of 332 wholesome and
318 systemically diseased chicken carcasses. Image masking was performed using the wavelengths
of 700 nm and 610 nm for the first and second imaging systems, respectively. The relative reflectance
intensity at individual wavelengths, ratio of intensities between pairs of wavelengths, and intensity
combinations based on principal component analysis (PCA) were analyzed. It was found that the
wavelengths of 540 nm and 580 nm are vital for successful chicken image differentiation. With proper
wavelength selection, PCA can be useful for multispectral image analysis. The wavelength of 540 nm,
selected as the key wavelength, was used in both imaging systems for image differentiation. An
image processing algorithm was developed to define and locate the region of interest (ROI) as the
differentiation area on the image. Based on ROI analysis, a single threshold was generated for image
differentiation. The average relative reflectance intensity of the ROI was calculated for each chicken
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image. The classification and regression trees (CART) decision tree algorithm was used to determine
the threshold value to differentiate systemically diseased chickens from wholesome ones. The first
differentiation threshold, based on the first image batch and generated by the decision tree method,
was applied to the second image batch for cross-system validation, and vice versa. The accuracy from
validation was 95.7% for wholesome and 97.7% of systemically diseased chickens for the firstimage
batch, and 99.7% for wholesome and 93.5% for systemically diseased chickens for the second image
batch. The threshold values, each generated using only one of the two image batches, were similar.
The results showed that using a single key wavelength and a threshold, this simple image processing
and differentiation method could be used in automated on-line applications for chicken inspection.
Published by Elsevier B.V.
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1. Introduction

While seeking to improve the food safety inspection process to minimize food safety
hazards, poultry plants must still continue to meet government food safety regulations,
satisfy consumer demand, and maintain their competitiveness. The need for new inspection
technologies YSDA, 1985, such as automated computer imaging inspection systems,
has been recognized. Multispectral imaging is a non-destructive method and can obtain
high classification accuracies for chicken conditions. It has great potential for use in
high-speed on-line processing plant operations. Several studies have investigated the
development of automated poultry inspection techniques based on multispectral imaging.
Chao et al. (2002)eveloped a multispectral imaging system using the 540 nm and 700 nm
wavelengths and obtained classification accuracies of 94% for wholesome and 87%
for unwholesome chicken carcasses. Through hyperspectral imagnig,et al. (2002)
achieved from 97.3% to 100% accuracy in identifying fecal contamination and spilled
tract material on poultry carcasses using images at the 434nm, 517 nm, 565nm, and
628 nm wavelengths. According to these studies, multispectral images contain spectral
and spatial information from the surface of chicken carcass, which is essential for efficient
identification of contaminated and systemically diseased chickens.

To achieve high classification accuracy, careful selection of key wavelengths is essential.
Much research using visible/near infrared spectroscopy analysis has shown that certain
wavelengths are particularly useful for the identification of diseased, contaminated, or
defective chicken carcassesh@o et al., 2003; Windham et al., 2003; Chen and Massie,
1993. Filters corresponding to those key wavelengths are then implemented for acquisition
of multispectral images. After image acquisition, image processing algorithms are
developed to adjust and analyze the images. With appropriate algorithms, specific features
can be extracted from multispectral images to more suitably represent the classification
target and increase the classification accuracy.

In considering practical on-line operations, the development of high accuracy multi-
spectral image processing and differentiation algorithms that may be transferred to or
implemented on different imaging systems would be very useful. Cross-system valida-
tion is important to evaluate an algorithm’s practicability. Therefore, the main objective
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of this study was to develop a simple multispectral image processing method that can
be used for different imaging systems for differentiation of wholesome and systemi-
cally diseased chickens. Two multispectral imaging systems were built independently to
collect images of wholesome and systemically diseased chickens. The image analyses
were applied to select the key wavelength for differentiation purposes. The differentiation
thresholds generated by images collected using each imaging system were then applied
to differentiate among images collected by the other imaging system for cross-system
validation.

2. Materials and methods
2.1. Sample collection

Eviscerated chicken carcasses were identified and collected by USDA FSIS veterinarians
from a processing line at Allen Family Foods (Cordova, MD, USA). A total of 990 chicken
carcasses were collected in two batches over a period from 2003 to 2004, of which 496 were
wholesome carcasses and 494 were systemically diseased. The first batch of 164 wholesome
and 176 systemically diseased chickens was collected and imaged between April and August
of 2003. The second batch of 332 wholesome and 318 systemically diseased chickens
was collected and imaged between November 2003 and April 2004. Systemically diseased
chickens showed external symptoms of septicemia or toxemia. Septicemia is caused by the
presence of pathogenic microorganisms or their toxins in the bloodstream, and toxemia
is the result of toxins produced from cells at a localized infection or from the growth of
microorganisms.

Chicken carcasses were collected from the processing line, placed in plastic bags, stored
in coolers, and covered with ice to minimize dehydration. Then, the bags were transported
to the Instrumentation and Sensing Laboratory (ISL) located in Beltsville, MD, USA within
2 h for imaging.

2.2. System development and image collection for the first imaging system

The first multispectral imaging system consisted of acommon aperture camera (MS2100,
DuncanTech, Auburn, CA, USA), aframe grabber (PCI-1428, National Instruments, Austin,
TX, USA), an industrial computer (BSI, City of Industry, CA, USA), and eight 100 W
tungsten halogen lights. The common aperture camera utilizes a color-separating prism to
split broadband light entering the camera through the lens into three optical channels, and
an interference filter and charge-coupled-device (CCD) imaging array are placed at each of
the three exit planes of the prism to acquire separate images. In this study, the three optical
channels were fitted with 460 nm (full width at half maximum, or FWHM, of 20.78 nm),
540 nm (18.31 nm FWHM) and 700 nm (17.40 nm FWHM) filters. It was found that a single
waveband filter at a waveband longer than 600 nm can be used for image-masking (to select
a threshold to separate the object and background); for this system, the 700 nm wavelength
image was used for this purposéang et al. (2005-escribe details of the wavelength
selection. The CameraLink utility program (DuncanTech, Auburn, CA, USA) was used to
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control camera settings, such as triggering mode, output bit depth (eight bits), integration
time of exposure, and analog gain. The frame grabber digitized the analog signals from the
CCD imaging arrays. An eight-bit monochrome image was saved from each of the three
channels.

The horizontal distance between the camera lens and the shackle to hold the chicken in
the field of view was 813 mm. For each channel, the image size was 656 pi#83pixels.

The field of view was 397 mmx 298 mm; therefore, the image resolution was 0.37mpar

pixel. Viewed from the shackle position, the eight tungsten halogen lights were arranged in
four pairs, with two adjacent pairs 318 mm above the camera and two adjacent pairs 318 mm
below the camera. Side by side, the two upper pairs spanned 190 mm, as did the two lower
pairs. Viewed from the side, the upper pairs were positioned 267 mm from the field of view
(546 mm from the camera) while the lower pairs were positioned slightly further at 305 mm
from the field of view (508 mm from the camera). This lighting arrangement provided more
illumination to the thigh and lower abdomen part of the chicken carcass, compensating for
what would otherwise be insufficient lighting in this image area.

A spectralon diffuse reflectance target was used as a calibration target to determine the
proper imaging integration time and gain for the lighting arrangement described above.
The gain and integration times for spectralon imaging were set at 2dB and 4.5ms for
the 700 nm channel, at 3dB and 5.0 ms for the 540 nm channel, and at 9dB and 9.5ms
for the 460 nm channel for calculating relative reflectance and for calibrating the chicken
images. Chicken imaging used the same gain values but required longer integration times
since the chicken reflectance was much lower than that of the spectralon. Accordingly, the
integration time was set at 5ms, 10ms, and 18 ms for the 700 nm, 540 nm, and 460 nm
channels, respectively. The same spectralon target was used to acquire calibration reference
images prior to collection of chicken images; for acquiring the dark reference image, the
camera lens was covered. For each chicken image, the chicken was hung on the shackle
against a black background so that the chicken image could be easily extracted from the
background.

2.3. System development and image collection for the second imaging system

The second multispectral imaging system used in this study consisted of a MultiSpec
Imager™ spectrometer (Optical Insights, LLC, Santa Fe, NM, USA), a SpectralAfieo
SV 512 back-illuminated CCD camera (PixelVision Inc., Tigard, OR, USA), a PMB-004
shutter and cooler control board, a PMB-007 serial interface board, a PMJ-002 PCI bus data
acquisition board, a LynxP&Y frame grabber, a Pentium-I11l 600 PC computer (Gateway,
Poway, CA, USA), and four 100 W tungsten halogen lights. Four interference filters and an
optical mirror assembly were used to create four waveband images of the target that were
acquired simultaneously on a single CCD focal plane. The resulting 16-bit multispectral
image contained four sub-images. The PixelView version 3.20 utility program (PixelVision
Inc., Tigard, OR, USA) was used to control camera settings, such as integration time and
image acquisition. The filter parameters selected for this system were 10 nm FWHM at
488 nm, 10 nm FWHM at 540 nm, 10 nm FWHM at 580 nm, and 10 nm FWHM at 610 nm.
The 610 nm wavelength image was used for image maskagg et al. (2004Qescribe
details of wavelength selection.
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The distance between the camera lens and the chicken sample field of view was 1143 mm.
Four tungsten halogen lights were mounted 610 mm from the field of view, on a rectangular
frame. During image collection, the spectralon diffuse reflectance target was used as a
calibration target for flat field correction. Because the part of the carcass that required more
illumination when using the first imaging system was excluded by a smaller field of view
when using this second imaging system, it was unnecessary to compensate for insufficient
lighting in this case.

Unlike the first imaging system, the second imaging system simultaneously acquired
four sub-images (one for each waveband) on a single CCD focal plane. Consequently,
appropriate selection of a single integration time resulting in a clear image safely below
saturation levels at all wavebands was essential. Through trial-and-error, it was found that
using an integration time of 500 ms, along with a (pre-set) high gain setting, was long enough
to reduce noise in the short-wavelength sub-images (460 nm and 540 nm) and short enough
to avoid over-saturation in the long-wavelength sub-images (580 nm and 610 nm) and in flat
field calibration. These settings were used for both flat field calibration and acquisition of
the chicken images. The cooling temperature for the camera control unit was set at 251 K.

Because each image in the second image batch consisted of sub-images on the single
CCD focal plane, the image registration process was required to precisely locate each sub-
image. The 460 nm sub-image was located at the upper left quadrant, the 540 nm sub-image
atthe upper right quadrant, the 580 nm sub-image at the lower right quadrant, and the 610 nm
sub-image at the lower left quadrant of the original image. The pixgtoordinates were
defined with (0, 0) in the upper leftmost corner of the original image. A grid paper with four
pre-defined points was used for image registration. In an image of the grid paper, each sub-
image showed each of the four points as a single pixel. The 610 nm sub-image in the lower
left quadrant, a 214 pixels 241 pixels area defined by four boundary points at (282, 20),
(282, 260), (495, 260), and (495, 20), was used as the base image in determining the offset
vectors between the 610 nm sub-image and the other three sub-images. The offset vectors
were used to determine the boundaries of the other three sub-images corresponding to the
boundaries of the 610 nm sub-image. The resolution of all the sub-images was 0?87 mm
per pixel.

Again, each chicken was hung on the shackle for imaging against a black background so
that the chicken image could be easily extracted from the background. Furthermore, for both
imaging systems, the same spectralon reference target was used to acquire the calibration
reference images prior to collection of chicken images, and the dark reference image was
acquired with the camera lens covered. This step is essential for applying the same image
differentiation method to differentimaging systems. Because the relative reflectance images
of chicken carcasses were always taken based on the white reference image of the same
spectralon reference target and the dark reference image of the covered lens, the images
from two different imaging systems could be used for the same differentiation method.

2.4. Multispectral image processing and region of interest (ROI) identification
After collecting images from both imaging systems, image processing steps were per-

formed, using MATLAB 6.1 (MathWorks Inc., Natick, MA, USA), to obtain single-channel
images for image analysis, as diagramme#im 1for the first image batch arfdg. 2for
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700 nm wavelength 540 nm or 460 nm wavelength

Creating mask
using 700 nm

imager

Applying mask

Fig. 1. Image processing for the first imaging system.

the second image batch. First, flat field correction, the essential step for cross-system image
differentiation, was performed according to the equation,
Ip—B
1= (1)
W —-B

wherelg is the original imageB the dark reference imagé/the white spectralon reference
image, and is the relative reflectance image. Second, the 700 nm image in the first batch
and the 610 nm sub-image in the second batch were used to build image masks. It was
observed that for both batches, the relative intensity for the black background was always
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Image registration

@
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Fig. 2. Image processing, to obtain single-channel sub-images for the second imaging system.

<0.1 and the chicken intensity was always >0.1. Thus, the threshold value of 0.1 was used
to create the mask. Third, for each batch, the mask was applied to the other wavelength
images to remove the background. This resulted in the background pixels of each image
being reset to zero; for other pixels, the intensity values remained the same. Then, for only
the second image batch, the other three wavelength sub-images were then separated from
the original images using the vectors of image registration.
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Wholesome chicken

Upper left corner point Pyr Upper right corner point

Lower left corner point Py Lower right corner point Pir

Systemically diseased chicken

Upper left corner point Pur. Upper right corner point

Lower left corner point Py, Lower right corner point P g

Fig. 3. Definition of region of interest (ROI) areas by four corner points.

It has been observed that the major differences between wholesome and systemically
diseased chicken occur between the breast and lower abd¥arandt al., 2004 Therefore,
for proper differentiation of systemically diseased chickens from wholesome chickens, the
region of interest was defined around this area. To find the ROI boundaries on an image,
four corner points must be located as showRim 3. The lower left and lower right corner
points were the conjunction points between abdomen and thigh along the chicken boundary.
The upper left and upper right corner points were the conjunction points between abdomen
and wing along the chicken boundary. Using the mask image, the boundary of the chicken
carcass was identifieHlig. 4illustrates the search operation for the lower left and upper right
ROI corner points. As shown iRig. 4, the lowest point of the boundary, which was on the
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Chicken boundary line
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Fig. 4. Search operation for the ROI corner points.

thigh, was then located as the start pointfFrom this start point along the boundary, seven
points were located, noted ag(#, y1) to Pr(x7, y7), the distancel whered=x; — xj_1 was
approximately 5.61 mm, nine pixels in the first batch, and six pixels in the second batch.
Based on trial-and-error, it was found that the corner point would be missed if the distance
dwere shorter or longer than 5.61 mm and the boundary was not a smooth curve or, in some
cases, not a continuous line. The following relational and logical operations were carried
out:

AL ={(yj+1—y;=0) and ;42— yj+1>0) and ;43— yj+2 > 0)} 2)
BL ={(yj+3— yj+4=0) and ;4 —yj45>0) and 15— yji6 =0}  (3)
CL=A{(j+3—yj+4=0) and ;44— yj+5 <0) and §ji5—yj+6 <0}  (4)
Dy ={(yj4+3 — yj+a < yj+a — yj+5) and (j4a — yj+5 < ¥j+5 — ¥j+6)} (5)
TL = {(Ac) and (@) or ((CL) and OL)))} (6)

When the logical value of . was false, the point at the boundary line and adjacent to the
start point R was selected as the new start point, and thus, another seven points were located
to repeat the operations. Empirically, at the first instance at which the logical valye of

was true, the point Pwas at the conjunction point between chicken thigh and abdomen,
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and thus, this point was defined as the lower left corner pqint 8imilarly, the following
relational and logical operations were carried out to determine the lower right corner point:

AR ={(yj+1—y; =0) and ¢;12 —yj+1 <0) and ¢;13— yj+2 < 0)} (7)
Br={(yj+3—yj+4=0) and {;j1a —yj4+5 <0) and 15 —yj46 <0)}  (8)
Cr={(yj+3—yj+4>0) and ;44— yj45>0) and §;;5—yj1+6>=0)}  (9)
Dr={(yj+3 = yj+a > yj+a — Yj45) and (jra — yjis > yjs5 —yj+e)}  (10)
Tr = {(Ar) and (Br)or ((Cr) and (Or)))} (11)

The operations were repeated until the first instance at which the logical valygveds
true, upon which the pointfvas defined as the lower right corner poinkP

From the lower left corner point P (x;, y;), the point R(x; — i, yk) in the boundary line
was located, andll pixels from R(x —i, Yk) to Px (% — i, Yk — (N — 1)) were compared to
the chicken boundary. The distance betweglaid R was approximately 9.35 mm; thus,
the numbem was 15 for the first batch and 10 for the second batch. Along the chicken
boundary, this operation would be repeated until all pixels frantoFPy were all within
the chicken boundary, which indicated the starting point of the chicken wing. Therefore,
the point R would be defined as the upper left corner poigt PSimilarly, from the lower
right corner point Pr(Xi, ¥;), the point R(xi — 1, y«) in the boundary line was located,
andN pixels from R(x; — 1, yk) to Py (6 — 1, yk + (N — 1)) were compared to the chicken
boundary. This operation was repeated along the chicken boundary, so that the peast P
determined as the upper right corner poigkP

After the four corner points were located, the straight line betwgenalRd R R, the
straight line between i and Rjr, the segments of the chicken boundary lines between
PLL and Ry and between ik and Rjr were defined as the ROI boundary.

2.5. Image differentiation

To investigate a proper differentiation method, three image features were calculated:
average relative reflectance intensity, average ratio of relative reflectance intensity, and
average principal component value. First, the average relative reflectance intensity from
ROI at each single wavelength was calculated for each relative reflectance image. The
average intensities at 460 nm and 540 nm wavelengthgd¢ahd Als40) were obtained for
each image of the first image batch. The average intensities at 488 nm, 540 nm, and 580 nm
wavelengths (Alss, Als40, and Algg) were obtained for each image of the second image
batch.

Second, the average of the ratio of relative reflectance intensity from ROI between
two wavelengths was calculated for each image. Thus, the average intensity ratio between
540 nm and 460 nm wavelengths (Af3/460 Was obtained for the first image batch. Three
average intensity ratios between 540 nm and 488 nm wavelengths,{Add, between
580 nm and 488 nm wavelengths (Adg/489, and between 580 nm and 540 nm wavelengths
(ARs5s0/540 Were obtained for the second image batch.
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Third, the average intensity of principal component from ROl was calculated for each
image. This feature was calculated using the covariance eigenvectors generated by principal
component analysis (PCA). PCA calculates the eigenvectors of the covariance matrix and
approximates the original data by a linear combination of the leading eigenvectors. For a
multispectral image ok spectral wavelengths, each witlhx n pixels, the image data is
reorganized into two-dimensional arrXyof sizes by k wheres=m x n. The covariance
matrix of X is defined as:

X'x
Cos—1
whereCy is a matrix of size&k x k, andX is thes x kmean-centered matrix of, determined
by first calculating the mean for each column, and then subtracting the column mean from
each value in that column. In the PCA decompositionghectors are eigenvectors of the
covariance matrixCy. For eachp;:

Cypi = Aipi (13)

Cx

(12)

where); is the eigenvalue associated with the covariance eigenvpct&ach principal
component P{s denoted by:

k
PG =) X,pji (14)
j=1
Each principal component is a weighted sum of the reflectance intensitkfr@avelengths.

In this study, multispectral images of 10 wholesome and 10 systemically diseased sample
chickens collected from the same time period as the first image batch, and of another 10
wholesome and 10 systemically diseased sample chickens from the same time period as the
second image batch, were used for PCA calculation. Each of the sample images was mean
centered, i.e. for each wavelength, the average intensity from the image was subtracted from
the relative reflectance intensity of each pixel. Singular value decomposition was performed
using MATLAB-based PLS Toolbox 3.0 (Eigenvector Research Inc., Manson, WA, USA) to
calculate the eigenvectgpsof the covariance matri€y for each of the 20 sample chickens.

The average covariance eigenvegipovalues were calculated for the sample chickens.

After obtaining the average intensities and covariance eigenvectors of the sample chick-
ens for each image batch, the images at each batch were mean centered, and then, the
principal components were calculated for each chicken. The average intensity of principal
component images (APC) was then calculated for analysis.

The classification and regression trees (CART) decision tree algorimginfan et
al., 1984 was used to generate a threshold to differentiate wholesome and systemically
diseased chickens, using the AnswerTree 3.0 program (SPSS, Chicago, IL). CART was
selected because this algorithm has been applied successfully to many differentiation and
classification application®@lk and Elder, 2000; Eisenberg and McKone, 1998; Pietersma
etal., 2003; Yang et al., 20D5T he details of CART processing could be referreBiteiman
et al. (1984)In order to obtain a single threshold for simple differentiation, the maximum
tree level (i.e. the maximum number of splits) was set at one to obtain the threshold. The
cross-system validation of image differentiation is the primary object of this study; therefore,
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to evaluate the performance of the differentiation method, two tests were carried out based
on the decision tree method. For first test, the threshold was generated using the firstimage
batch and then applied to differentiating the images in the second batch. For the second test,
the threshold generated using the second image batch was applied to differentiating the first
image batch.

3. Results and discussion
3.1. Principal component analysis

Table 1lists the results of PCA for 20 sample chickens for the first image batch and
another 20 sample chickens for the second image batch. For the 10 wholesome and 10
systemically diseased sample chickens collected at the same time period as the first image
batch, the standard deviation for the average covariance eigenvector is only 0.0%240for
and 0.0599 fotX4e0. The first principal component captured 83.41% of the total variance
in the 20 sample images. These results show that the first principal component image could
adequately represent the total variance of the original image. Therefore, the covariance
eigenvectors iffable 1were used to determine the weighted sum value of the first principal
component PEfor each image from the firstimage batch according to the equations below:

PCL = X540 x 0.65434 X460 x 0.5543 (15)

whereXsaspandX e are the mean-centered relative reflectance intensities at the 540 nm and
460 nm wavelengths, respectively. The average intensity of the first principal component
image for each image was then calculated for image differentiation.

Forthe 10 wholesome and 10 systemically diseased sample chickens collected at the same
time period as the second image batch, the standard deviation for the average covariance
eigenvector is also small: 0.0328 f&igg, 0.0158 forXs40, and 0.0186 foXsgo. The first
principal component captured 99.63% of the total variance in the 20 sample images. The
results also indicate that the first principal component image could adequately represent the
total variance of the original image. Therefore, the covariance eigenvecttable lwere
used to determine the weighted sum value of the first principal componantoP€ach
image from the second image batch according to the equation below:

PCi = X4gg x 0.5836+ X540 x 0.5552+ X5g0 x 0.5912 (16)
Table 1
Principal component analysis (PCA) results at the first principal componen} {6Gample chickens
Wavelength X (nm) Eigenvectorp Standard deviation for eigenvecter,
First image batch 540 0.6543 0.0321
460 0.5543 0.0599
Second image batch 488 0.5836 0.0328
540 0.5552 0.0158

580 0.5912 0.0186
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where X4ss, X540, and Xsgg are the mean-centered relative reflectance intensities at the
488 nm, 540 nm, and 480 nm wavelengths, respectively. The average intensity of the first
principal component image for each image was then calculated for image differentiation.

3.2. Image differentiation

Table 2lists the results for image differentiation using a single threshold generated
by the decision tree method using Al, AR, and APC, respectively. The results show that
PCA could be applied to multispectral image analysis for accurate differentiation. For the
first image batch, the differentiation accuracies using APC were 100% for wholesome
chickens and 94.32% for systemically diseased chickens. For the second image batch, the
differentiation accuracies using APC were 90.66% for wholesome chickens and 92.77%
for systemically diseased chickens. The accuracy for APC was slightly lower than those
using Als4o and Alsgg but much higher than those using AR. The high differentiation
accuracies using APC show that the intensity of the first principal component image can be
used for multispectral image differentiation between wholesome and systemically diseased
chickens. With proper wavelength selection, principal component analysis would be applied
to multispectral images in order to obtain a simple intensity combination from multispectral
wavelengths.

From Table 2 Alsso and Alsgg could be used for proper differentiation since the dif-
ferentiation accuracies using the average intensity from each of the 540 nm and 580 nm
wavelengths were high. The accuracies for image differentiation usigyg &hd Alsgg in
the second image batch were all higher than 96% for wholesome chickens and 99% for
systemically diseased chickehsu and Chen (2001found that the reflectance from these
two wavelengths closely relates to symptoms manifesting from the relative oxymyoglobin
levels found in systemically diseased chickens. The result clearly shows that the 540 nm
and 580 nm wavelengths are very useful for differentiation.

Table 2
Image differentiation accuracies using a single threshold generated by decision tree
Wholesome (%) Systemically diseased (%) Threshold

Firstimage batch Ao 100.0 97.16 0.2572
Al 460 96.34 90.34 0.2093
ARs540/460 49.36 73.86 1.1760
APC 100.0 94.32 0.2567

Second image batch Mg 92.77 83.65 0.2710
Alsa0 96.39 100.0 0.2626
Alsgo 96.69 99.69 0.3009
ARs40/488 92.17 50.00 0.8992
ARs5s0/488 93.37 50.63 0.9511
ARsg0/540 80.72 57.86 1.0586
APC 90.66 92.77 —0.0647

First image batch: 164 wholesome chickens and 176 systemically diseased chickens; second image batch: 332
wholesome chickens and 318 systemically diseased chickenshéhverage intensity ahm wavelength; AR:

the average intensity ratio betwdeamm and nm wavelengths; APC: the average principal component combination
value.
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The differentiation accuracies using the average intensities from the 460 nm and 488 nm
wavelengths were relatively low for systemically diseased chickens, at 90.34% gy Al
for the first image batch, and at 83.65% forséd for the second image batch. The result
shows that the 460 nm and 488 nm wavelengths may contain insufficient information for
differentiation, compared to the 540 nm and the 580 nm wavelengths. Unlike the 540 nm and
580 nm wavelengths, the 460 nm and 488 nm wavelengths cannot be used alone for differ-
entiation. This situation may also cause the poor differentiation usingdMgo ARs40/488
and ARsgoi48s as shown by the low differentiation accuracieSable 2

Although the accuracies for Ao and Alsgg were high, which indicated that these
two wavelengths contain useful and essential information for differentiation, the average
intensity ratio between these two wavelengthsgégr 40 was still too poor to be used for dif-
ferentiation. The reason for this conflict situation could be that the low reflectance intensities
of the 540 nm and the 580 nm wavelengths are indicative of the same oxymyoglobin-related
symptom of systemically diseased chickehsi(and Chen, 2001 Because of this and
examining the image detail, it is found that the relative magnitude of the average intensity
for the same chicken compared to other chickens would be the same between the 540 nm
and 580 nm wavelengths. Mathematically, the average intensity ratio between these two
wavelengths would be close to a constant. Therefore;gékocannot be used for differ-
entiation.

From Table 2 it is evident that differentiation was more successful using the average
intensity (Al) at a single wavelength or the average intensity of the first principal component
image of multispectral images. Because only the 540 nm wavelength was used in both
imaging systems, only the average intensity from this wavelengtiu@AWwas used for
further cross-system validation.

3.3. Cross-system validation for image differentiation

Table 3shows the differentiation accuracies for different tests. For the first test, the
differentiation accuracies for the first image batch were 100% for wholesome chickens
and 97.2% for systemically diseased chickens. The generated threshold, 0.2572, was then
applied to the second image batch and resulted in differentiation accuracies of 99.7% for
wholesome chickens and 93.5% for systemically diseased chickens. For the second test, the
decision tree classified the second image batch with accuracies of 96.4% for wholesome

Table 3
Image differentiation accuracies for cross-imaging validation of imaging systems
First image batch (%) Second image batch (%)

First test Wholesome 100 99.7

Systemically diseased 97.2 93.5

Threshold 0.2572 0.2572
Second test Wholesome 95.7 96.4

Systemically diseased 97.7 100

Threshold 0.2626 0.2626

Firstimage batch: 164 wholesome chickens and 176 systemically diseased chickens and second image batch: 332
wholesome chickens and 318 systemically diseased chickens.
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chickens and 100% for systemically diseased chickens. The generated threshold, 0.2626,
then correctly classified 95.7% of wholesome chickens and 97.7% of systemically diseased
chickens for the first image batch.

The results clearly showed that using a single threshold generated by the CART decision
tree method could perform an accurate differentiation between wholesome and systemically
diseased chickens when using the average relative reflectance intensity from the ROI area
at the single waveband of 540 nm as an input. The average intensity at 540 nm from whole-
some chicken is consistently higher than the average intensity from systemically diseased
chicken; therefore, the waveband at 540 nm can reflect differences between wholesome and
systemically diseased chicken conditidriul and Chen, 200)L Moreover, the threshold
values changed by only 2.06% from one imaging system to another. The high accuracy
of the differentiation rate and consistent threshold value evidently indicated that this sim-
ple method could be used in different imaging systems, which is important for real-world
applications.

The results also showed that differentiation performed better for systemically diseased
chickens when a larger sample population (the second image batch) was used for determin-
ing the threshold value. The differentiation rate for systemically diseased chickens increased
by 4.2% from the first test (335 training images) to the second test (638 training images);
however, the differentiation rate decreased by 4.0% for wholesome chickens. Assuming
that public concern would value increased assurance of food safety over economic
benefit, the threshold generated at the second test, 0.2626, might be more appropriate for
application.

Using the average relative reflectance intensity from the ROl area is helpful for differen-
tiation because the areas excluded by ROI, such as the wings and thighs, would contribute
a number of pixels where the difference of intensity between wholesome and systemically
diseased chickens was less significant to the average intensity calculation. This phenomenon
can be observed more clearly from the contour imagésgn5. From the contour images,
it is evident that the major intensity differences between wholesome and systemically dis-
eased chickens occur between the breast and lower abdomen. The intensity difference for
breast and thighs is less significant, and the intensity difference for wings is hardly observed.
Also, illumination factors affecting chicken sample presentation could make the ROl area
feasible for inspection based on image analysis methods. In presenting a chicken carcass
for image acquisition, providing uniform illumination across the entire chicken carcass is a
great challenge. Spectral features from the chicken breast area are least affected by physical
shape. Shadows will always occur on peripheral areas of the carcass, such as the wings,
thighs, and sides of the chicken.

A single waveband filter at 540 nm and one additional filter at a waveband longer than
600 nm for image-masking purposes (such as 610 nm or 700 nm) could be implemented
for identification of systemically diseased chickens by an automated on-line multispectral
imaging system using a simple average relative reflectance intensity calculation. The ROI
areadefined in this study is best suited for the sample handling and presentation requirements
of an automated on-line spectral imaging system. The algorithm proposed in this study to
identify the ROI area can be applied to images from different imaging systems even when
the resolutions and the fields of view in these systems are different from each other. The
result of the cross-system validation in this study can be considered satisfactory.
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Systemically diseased chicken

<0.3

Fig. 5. Contour images at the 540 nm wavelength for wholesome and systemically diseased chickens.

4. Conclusions

In this study, a simple multispectral image processing and differentiation method was
developed to differentiate wholesome and systemically diseased chickens in different imag-
ing systems. Itwas found that the wavelengths of 540 nm and 580 nm are the key wavelengths
for differentiation between wholesome and systemically diseased chickens. Itwas also found
that principal component analysis could be applied to multispectral images for spectral com-
bination without losing essential information at each wavelength for accurate differentiation.
Because of significant color differences that occur between wholesome and systemically
diseased chickens at 540 nm, an interference filter at that wavelength was selected for
implementation as the key wavelength for two different multispectral imaging systems.
An algorithm was developed to find the ROI on the multispectral images from different
imaging systems with different resolutions and the fields of view. Prior to collection of
chicken images, it was essential that the same spectralon white reference target was used
for both imaging systems to acquire calibration reference images and that the camera lens
was covered on both imaging systems to acquire the dark reference image. This step was
to allow the differentiation method developed based on one system could be applied to
the other system. This transferability is very useful for real-world application. With the
average relative reflectance intensity as the input, differentiation thresholds for identifying
wholesome and systemically diseased chickens were determined using the CART decision
tree algorithm.

Using the differentiation threshold generated from the first image batch (0.2572), dif-
ferentiation accuracies for wholesome and systemically diseased chickens were 100% and
97.2%, respectively, for the first image batch, and were 99.7% and 93.5%, respectively,



C.-C. Yang et al. / Computers and Electronics in Agriculture 49 (2005) 255-271 271

for the second image batch. Using the differentiation threshold generated from the second
image batch (0.2626), differentiation accuracies for wholesome and systemically diseased
chickens were 96.4% and 100%, respectively, for the second image batch, and were 95.7%
and 97.7%, respectively, for the first image batch. This differentiation method, using the
simple calculation of average relative reflectance intensity, showed significant potential for
testing in an automated on-line multispectral imaging inspection system.
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