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Abstract

Vegetation water content (VWC) is one of the mogiamant parameters for the
successful retrieval of soil moisture content fromrowcave data. Normalized Difference
Infrared Index (NDII) is a widely-used index to remote@nse Equivalent Water Thickness
(EWT) of leaves and canopies; however, the amounatémn the foliage is a small part of
total VWC. Sites of corndea may) soybeanGlycine mak, and deciduous hardwood
woodlands were sampled to estimate EWT and VWC duringdath@/8isture Experiment 2005
(SMEXO05) near Ames, lowa, USA. Using a time serieksasfdsat 5 Thematic Mapper,
Advanced Spaceborne Thermal Emission and ReflectidioReter (ASTER) and Advanced
Wide Field Sensor (AWIFS) imagery, NDII was related WEwith R? of 0.85; there were no
significant differences among land-cover types. FurtbeenEWT was linearly related to VWC
with R? of 0.87 for corn and 0.48 for soybeans, with a signifigdatger slope for corn. The
2005 land-cover classification product from the USDA Natidkgricultural Statistics Service
had an overall accuracy of 92% and was used to spatiditipdie VWC over the landscape.
SMEXO05 VWC versus NDII regressions were compared withighgeessions from the Soill
Moisture Experiment 2002 (SMEX02), which was conducted irsdéinee study area. No
significant difference was found between years for ¢Brn0.13), whereas there was a
significant difference for soybeaR € 0.04). Allometric relationships relate the siz@oné part
of a plant to the sizes of other parts, and may beethdt from the requirements of structural
support or material transport. Relationships between HBdIVWC are indirect, NDII is

related to canopy EWT, which in turn is allometricatyated to VWC.

Keywords: CornZea mayssoybeanGlycine maxdeciduous hardwood woodland, Soil Moisture

Experiment 2005, Normalized difference infrared index, NDWTE VWC, plant allometry



1. Introduction

Accurate estimation of soil moisture content is ofithe key steps in monitoring land-
atmosphere interactions, global water circulation@tbon cycling (Betts et al., 1996; Koster et
al., 2004; Orchard and Cook, 1983). Soil moisture contertides successfully retrieved the
last two decades with passive and active microwave techraguesious wavebands (Jackson et
al., 1982, O’'Neill et al., 1996). However, there is a rfeedmproved algorithms. The Soil
Moisture Experiment 2005 (SMEX05) was conducted near Ames, o validate soil moisture
satellite systems and support soil moisture algorithmldpreent (Jackson, 2005). The main
goals of this experiment were the validation of smisture content, mapping of soil moisture
variability, and the study of relationships among soil hooés vegetation and the atmosphere
(Jackson, 2005).

Vegetation water content (VWC, kg2 the total amount of water in stems and leaves,
is one of the most important parameters for the sstdagtrieval of soil moisture content from
active and passive microwave remote sensing (JacksanE&?, 2004). Sensitivity of soil
moisture to VWC in the tau-omega model (Mo et al., 198R)dated by the fact that VWC
appears in two of the three terms for brightness tesiyer at the top of a medium with soil and
vegetation (Njoku et al., 2003). For example, Bindlisth Barros (2002) states an error of 1 kg
m? in VWC estimation can result in error of 0.2 m* gravimetric moisture content for
relatively dry soils. If VWC can be estimated using ogensors, then remotely-sensed
estimates of soil moisture content with microwaveadaitl be more accurate (Jackson et al.,

2004; Anderson et al., 2004; Chen et al., 2005; Yilmaz aehairess).



The foliar water volume per leaf area®(m?, conveniently scaled as mm) is termed the
equivalent water thickness (EWT) and can be applied W@$ear canopies. Many studies have
related foliar water content with reflectances atrrafrared (NIR) and shortwave infrared
(SWIR) portion of the spectrum (Tucker, 1980; Hardisky et1@883; Hunt & Rock, 1989; Hunt,
1991; Gao, 1996; Cecatto et al., 2002; Fensholt & Sandholt, 2G08;8&Gamon, 2003; Zarco-
Tejada et al., 2003; Maki et al., 2004; Cheng et al., 2006; Davitsal., 2006; Trombetti et al.,
in press; Yilmaz et al., in press). The goal is toregde EWT from satellites like the Moderate
Resolution Imaging Spectroradiometer (MODIS) for estingasoil moisture content (Trombetti
et al., in press; Yilmaz et al., in print). The praoblarises in relating EWT to VWC, since EWT
is only a fraction of the total water content per plant

Allometric relationshipsy = x “, where the exponent, may be 1.0 for a linear
eqguation) are used to characterize the relative growdafrand stem biomass (Niklas, 1994;
Reddy et al., 1998; Enquist and Niklas, 2002; Jenkins et al.).2@04 assumed that an
allometric relationship exits between VWC and EWT, aberéng leaves must be supported by
stems and stems supply water required for transpiraiitimetleaves. So the objective of this
study is to test the relationship between VWC and EWThi@e different vegetation types: corn
(Zea mayy soybeanGlycine may, and deciduous hardwood woodlands. This objective was
divided into three steps. First, EWT was estimated ubiegegetation data collected during
SMEXO0S5 and related to a remote-sensing index. Themethgonship between EWT and VWC
was tested for the three different land cover tygasally, VWC was related to remotely sensed
data from SMEXO05 and compared with Soil Moisture Experin2®2 (SMEX02) vegetation

data sets (Anderson et al., 2004; Jackson et al., 2004).



2. Background

Canopy water content has been estimated by variousagiegeindices. It is well known
that shortwave infrared reflectances (SWIR) are negigtrelated to the leaf water content due
to the large absorption by leaf water (Tucker, 1980; Hunb&dR1989; Ceccato et al., 2001).
However, an SWIR band alone is not adequate and it musirteasted with a NIR band to
estimate the VWC, since the other leaf parametersi(gegnal leaf structure) also affect the

SWIR reflectance (Hunt & Rock, 1989; Gao, 1996; Ceccata,2G01).

For this study, a combination of SWIR and NIR bands wed tws calculate Normalized

Difference Infrared Index (NDII) from Hardisky et §.983):

NDII = (po.es— p1.65) / (po.85+ p1.65) (2)

wherep1.65 angpo.gsare the reflectances at 1.65um and 0.85um wavelengths;tresjye
Based on the analysis of reflectance spectra andutawefsideration of the scattering
and absorption properties of the atmosphere and vegetatimpies, Gao (1996) developed the

Normalized Difference Water Index (NDWI):

NDWI = (po.s5s—p1.24) / (Po.s5+ P1.24) (2)

whereps 24 IS the reflectance at 1.24pm wavelength. NDWI satarat higher LAl values
compared to NDII, due to its weaker liquid water absorpiature. The reason NDII was used

in this study is that medium-spatial-resolution multctped sensors [Landsat 5 Thematic Mapper



(TM), Advanced Wide Field Sensor (AWIFS), and Advanced Space Thermal Emission and
Reflection Radiometer(ASTER)] have bands at 1.65 preieagth, but not at 1.24 yum
wavelength.

NDII has been studied by numerous authors under diffeeanes. Kimes et al. (1981)
called this index ND45 because it was a normalized difiez of Landsat TM bands 4 and 5.
They used this index to examine biophysical variablesagfs;rNDII performed about the same
as the normalized difference vegetation index (ND\Hardisky et al. (1983) showed NDII was
related to canopy water content, and provided a name (ussdimgt does not to refer
specifically to a single sensor. Fensholt and Sandd@@3) coined the name shortwave infrared
water stress index, SIWSI(6,2), because they used MO&18 2 and 6 reflectances to observe
water stress in a semiarid environment. Jackson @Q0fl4), Maki et al. (2004), and Verbesselt
et al. (2007) used NDII to estimate VWC or EWT, but reféteethe index as NDWI. Xiao et
al. (2005) referred to NDII as the Land Surface Water Iifd&xVI) using MODIS bands 2 and

6 for paddy rice landcover mapping.

3. Methodology

3.1. Site description

The Walnut Creek watershed, south of Ames, lowa, UB4 been the focus of research

by USDA-ARS National Solil Tilth Laboratory (Hatfie&t al., 1999). This region was used for

the Soil Moisture Experiment 2002 (SMEXO02; Anderson et al., 208ekson et al., 2004) and

the Soil Moisture Atmospheric Coupling Experiment (SMACIKustas et al., 2004).



For SMEXO05, a regional study area and a smaller interssiny area were selected
(Jackson, 2005). The intensive study area is located he#d€es2 N and 42° 04N latitude,
and 93° 31 W and 94° 01W longitude, for a total area of 22 km by 41 km (Jack2605).

The study areas in SMEXO05 were extended west comparddEX® in order to cover
deciduous hardwood woodlands along the Des Moines River (Fjg. Tl#e dominant land

cover in central lowa is cropland, where corn and saglcover nearly 90% of the Walnut
Creek watershed (Doraiswamy et al., 2004). Topography raegeedn 280 m to 330 m with

an average elevation of 310 m. The climate is humid mian average temperature of 10.7 °C.
Average annual rainfall is 835 mm and the heaviest preagitatonths are May and June with
about one third of the annual total (Jackson, 2005).

Daily sampling for soil moisture content over the m#ige study area was a major
objective of SMEXO05 (Jackson, 2005). The same crop figldsaodland sites were used for
both soil moisture and vegetation sampling. Fields tiéhdominant land cover, corn and
soybean, were sampled weekly during the experiment froraribtd 05 July 2005 to obtain a
large range in EWT and VWC. Five deciduous hardwood woodlteslwsere sampled once,

because large changes in EWT and VWC were not expected.

3.2. Crop EWT and VWC

At each field, 5 plots were established 50 m apart widgctons alternating 90° across
and along the rows from the field’s entry point. Ple&se geolocated with a Garmin (Olathe,
Kansas, U.S.A.) eTrex Legend global positioning system edatith the wide-area

augmentation system (4-8 m accuracy).



For each field, row direction and spacing were determiakeahst all rows were 30
inches apart (0.76 m). For each plot, plant densityesamated by counting the number of
plants in two adjacent rows over a transect lengttDdd0 meters. Average plant height and
canopy cover were estimated using a meter stick. Uh@er of leaves on an average-looking

plant per plot was counted to estimate vegetative graates

One average-looking plant per plot was cut at grounel,Iplaced in a paper bag, sealed
in a plastic bag, and placed in a cool dark containavaad water loss as much as possible.
Upon return, leaves and stems were separated and weiBlad.leaf area was measured using
a LI-3100c leaf area meter (Li-Cor, Inc., Lincoln, Neetka, USA). Stems and leaves were dried

for 48-72 hours at 60 °C and weighed.

Leaf equivalent water thickness (EWAL mm) was calculated:

EWT|eaf = (FW-neaf - DWT|eaf) /dW Aleaf (3)

where Aearis the leaf area (fh FWTearis the leaf fresh weight (kg), DWeks is the leaf dry

weight (kg), andiwis the density of liquid water (1000 kg3n VWC (kg n®) was calculated:

VWC = mn- [(FWTIeaf - DWTIeaf) + (FWTstem_ DWTsten)] (4)

wheren is plant density (numberfjy and FWTEemand DWTemare the stem fresh and dry
weights (kg), respectively.
Leaf area index (LAI, fleaf ni” ground area) was measured for each crop plot using an

LI-COR, Inc. (Lincoln, Nebraska, USA) LAI-2000 Plant ©g@y Analyzer. The LAI-2000



measurements were taken along the 10-m transect. ethisique was applied under diffuse
skylight conditions whenever possible (Wells & Norm&a®91). For some sites on some dates,
LAl was measured by under direct sunlight; hence, LAl inaeased 10% for these plots (John
Norman, personal communication 2004; Anderson et al., 200#aYiet al., in press). Canopy

EWT (EWTcan, mm) was calculated:

EWTean= LAl - EWTieas (5)

where LAl is the corrected leaf area index. ValuielsAd were checked for outliers by

multiplying the leaf area of an average plant timegthat densityy).

3.3. Woodland EWT and VWC

Deciduous hardwood woodlands occur in the study area ne&scsteams and the Des
Moines River, where the topography is generally too steepltivate. At each of 5 sites, 4
plots were established along the path for monitoringnsoisture. Generally, each plot was 25
m by 25 m, although depending on the local topography, the sizsome plots were smaller.
For each tree over 2 m height, species was determimediameter (cm) at 1.3 m height was
measured. Average height of the trees in the plotesashated using an inclinometer at 50-m
distance.

At each plot, leaf samples were collected with a prupwig having a maximum reach of
4.5 m. The leaves were placed in paper bags, and stoabd\as Upon return, leaves were
weighed and the areas measured using the LI-3100c leaf arera mbke samples were then

dried 48 hours at 60 °C and weighed.
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With the average height of the plots ranging from 2@ 3G m, it was not possible to
sample leaves from the top of the canopy; hencef #tle leaf samples collected were
considered shade leaves (Abrams & Kubiske, 1990). For hardwoddsonifers in the central
United States, Abrams & Kubiske (1990) found there are laffgreshces in specific leaf area
(kg m?) between sun leaves and shade leaves. It is asshatespécific leaf area is related to
leaf thickness (Knapp & Carter, 1998) and thus to leaf watleime. Therefore, the ratio of
specific leaf area of sun leaves to shade leaves (Ab&aKubiske, 1990) was used to estimate
EWTieat from the measured data on shade leaves.

LAl was measured with hemispherical digital photograptisn@z et al., in press) at five
locations in each plot. Zhang et al. (2005) showedttigahemispherical photos with automatic
exposure settings underestimated LAI; therefore, arasitilm equation based on the Li-Cor LAI-
2000 was applied (Yilmaz et al., in press). Then, EWand EWEan of the woods were
calculated with Equations 3 and 5, respectively.

For selected trees, wood cores of 3 mm in diameter ang 4B cm in length were taken
by drilling at 1.3 m height with an increment borer. Thee samples were placed in plastic
bags, and stored as above. Core fresh weights {&MKg) and dry weights (DWeL kg) were
recorded upon return and after drying for 48-72 hours at 6628pectively. The density of
wood () was taken to be 600 kginan average value for deciduous hardwood species in the
region (Birdsey, 1992). Tree wood volun (°) was calculated using region-specific
eqguations based on stand height and tree diameter (HalamgeH, 1991), in which the stand

site index was estimated by the stand height. WoodIak@ kg m?) was calculated:

VWC = ZV * (1 - DW-I-Core/ FWTCore) " d / A + LAI * EW-neaf * dW (6)
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whereXV isthe wood volume (f) summed for each tree in the plot, A is the pleaan), dw

is the density of liquid water, and LAl and EWifare the corrected values.

3.4. Satellite Data

For SMEXO05, a time series of 8 scenes from Landsad#i54Tscenes from AWIFS and 2
scenes from ASTER satellites were acquired, geoerefedeand atmospherically corrected
(Table 1). The study site was mostly under clouds foBthagust TM scene and two scenes
(22 June TM and 1 July TM) have about 40% cloud cover, se thegges were not processed
further. The path 27/row 31 TM scenes and both ASTERescgid not cover the full study
area. The scenes were registered by using the Envirofmnafisualizing Images (ENVI)
version 4.1 (Research Systems, Inc., Boulder CO, USA).

Digital numbers for TM, AWIFS and ASTER images werewted into radiances and
then atmospherically corrected into land-surface reftess (Yilmaz et al., in press). The
atmospheric correction for all the channels was madweg use MODTRAN model (Adler-
Golden et. al., 1999). As input data for MODTRAN, sun phetemdata were obtained through
the NASA Goddard Space Flight Center AERONET netwottp{#iaeronet.gsfc.nasa.gov) for
the site in Ames, lowa (located in the SMEXO05 intensitgly area). Ozone content data were
obtained from Environment Canada (http://woudc.ec.gc.ca/ofgddectMap/), radiosonde data
were obtained from National Oceanic and Atmospherimiagtration
(http://raob.fsl.noaa.gov/), and meteorological dateevedtained from nearby weather stations.

NDII (Fig. 1B) was calculated using Equation 1 from thellgarface reflectances (Fig. 1A).
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The 2005 USDA National Agriculture and Statistics ServicR3N) 30-m land-cover
classification for the state of lowa was acquiredp{hivww.usda.gov/nass/). The NASS land-
cover classification was compared to ground data acquireéagdBMEXO05. Teams of people
drove around the SMEXO05 study area, observed the land typegrand determined latitude and
longitude using a Garmin global positioning system. Tharacy of the classification was

assessed using the methods of Congalton & Green (1999).

4. Reaults and Discussion

4.1. Time course of NDII

Starting with the ASTER image on 22 May 2005 (Table 1), N@lsoybean and corn
fields were low at about -0.35 to -0.30, the values évelsoil, and increased over time until mid
July (Fig. 2). The NDII for corn, soybean, and woodlaites showed large differences in June,
averaging -0.1 for soybean, 0.1 for corn, and 0.3 for woodlaesl §ig. 2). In July and August,
NDII for corn and soybean was equal to that for woodlaridiBIl for the woodland plots
showed no trend over time (Fig. 2), because spring lgadacurred about four weeks prior to
the first image acquired.

There were no apparent differences in NDII calcul&ta the different multispectral
sensors, therefore the data were combined to examimelaenship of NDII to EWT during
SMEXO05. Whereas the differences in band pass forittezaht sensors will create differences
in NDII for the same pixel on the same date, the wifiees in NDII were probably small

compared to the change in NDII over time for corn arydbean, and may be small compared to
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possible errors from the atmospheric correction. Teeteof sensor on NDII value would have

been tested if scenes from the TM, ASTER or AWiF$evaequired for the same date.

4.2. Landcover

Based on the NASS classification, the dominant laneictype for the study area was
cropland, with 34% of the area in corn and 30% of the iareaybean (Fig.3). Moreover
pasture and woodlands cover 17% and 12% of the study areatiredpedhe SMEX02 study
area (100 by 50 km; Doraiswamy et al., 2004) was centered 25 #ma east of the SMEX05
study area and did not include the woodlands next to thé/loeges River. The differences in
the percent cover of crops (90% for SMEX02 and 65% for SME¥05due to offset distance
between the study areas.

The NASS classification has an overall accuracy &b3@r the SMEXO05 area (Table 2).
The k-hat statistic is 0.88 + 0.021 standard error, so tlsifi@tion is highly significantR <
0.001). Corn and soybean fields were classified with hggn and producer accuracies, whereas
most of the alfalfa fields on the ground were clasdifis soybean (Table 2). Two of the
woodland sites were misclassified as other crops (e.glagdtaxseed, safflower) and as an
urban area. Furthermore some of the corn fields weselassified as woodland resulting in a

user accuracy of 79% for woodlands.

4.3 LAl - EWT — NDII

From the start to the end of SMEXO05, LAI for corn ineeghfrom 0.37 to 3.29 and LAl

for soybean increased from 0.16 to 1.97mif. EWTiea increased from 0.26 to 0.29 mm for
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corn and from 0.16 to 0.19 mm for soybean, because ther nenger leaves tended to be
thicker. Therefore, EWgE,increased from 0.11 to 0.91 mm for corn and from 0.02 to 0.57 mm
for soybean (Fig. 4).

Uncorrected mean LAI (+ standard deviation) was 2.32 + 03@ifrior the deciduous
hardwood woodland sites. Because the hemisphericalgriaptts were not underexposed
(Zhang et al., 2005), the resulting woodland LAl were moglel than expected. Using the
calibration from Yilmaz et al. (in press), the coteetmean LAl was 4.24 + 0.75’m. The
shade-leaf EWT averaged 0.08 mm. With the sun-shade leatton (Abrams & Kubiske,
1990), the average leaf EWT was 0.16 mm, which is much dioske values for other
deciduous hardwood species (Hunt & Rock, 1989; E. R. Huntinprublished data). Therefore,
the average canopy EWT (corrected for both LAl andshade leaf EWT) was 0.62 £ 0.17 mm.

For the same period, NDII values increased from -0.07 todhd3rom -0.18 to 0.17 for
corn and soybean, respectively, whereas NDII for thedlzmd sites averaged 0.37. NDII was
linearly related to canopy EWT for corn, soybean and wawtl(Fig. 4). Using dummy
variables to separate the effects of species on thé-NENWT relationship (Fig. 4), the
regression equation for soybean was significantly iffefrom the equations for corn and
woodland P = 0.02). However, analysis of the residuals indicatat@lsoybean plots sampled
on the first two days (low LAl from 0.16 to 0.25' mi?) strongly biased the regression
coefficients. Very low LAl was also associated witdry low soybean cover, where the
reflectance of the soil or multiple scattering begwglant and soil could overwhelm the signal
from vegetation (Ray and Murray, 1996). When the 6 plet®wemoved from the analysis, the
regression equations for soybean and woodlands were noicsigtly different from the

equation for cornK = 0.14 and® = 0.07, respectively). The overall NDIl — EWT regressio
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equation (Fig. 4) ha’? of 0.85 and the standard erroryadstimate of 0.093 mm, which is about
equal to an LAl of 0.5 fiim?. The strong linear relationship between canopy EWATNDII

over the range of data obtained during SMEXO05 supports tiEusions of previous studies
(Yilmaz et al., in press; Ceccato et al., 2002; David$a@h £2006). Data from Hunt (1991) and
SAIL model simulations (not shown) indicate that W2l — EWT relationship will begin to

saturate at NDIl from 0.4 to 0.5.

4.4.VWC — EWT

VWC was linearly related to canopy EWT for each crqget{Fig. 4). For the corn and
soybean regression equations respectivelyRtiveere 0.87 and 0.48 and the standard errgr of
estimates were 0.49 and 0.17 kg (Rig. 5). The VWC — EWT regressions of corn and soybean
were significantly different using dummy variable regi@asgP < 0.001; Fig. 5).

On the other hand, there was no significant relatignsbiween woodland VWC and
canopy EWT P = 0.81; Fig. 6). The DWhd FWTcoreratio averaged 0.573 + 0.0747. There
were too few data to detect differences among specigag bsingle factor Analysis of
Variance (ANOVA), there was no significant differenaeDWT o d FWTcoreamong sitesK =
0.25). Thus, the primary variation in VWC of deciduous haatwoodlands was stand wood
volume, determined primarily from tree diameter and dgngitanopy EWT was a small
fraction of total VWC (Fig. 6), so there was no abitypredict VWC from NDII. Therefore,
woodland VWC was assigned the average plot value of 5.01°Kgmnegional analyses.

Tree wood volume and leaf area have strong allonretiationships with tree diameter

(Niklas, 1994; Jenkins et al., 2004), so a relationship betwW&én and EWT was expected but
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not found (Fig. 6). There may be a stronger relationséipreen tree sapwood cross-sectional
area at 1.3 m height and leaf area because of theewswunt for the active xylem to supply
water to the leaves for transpiration (Waring et1#82). For trees, several years of annual
xylem growth may supply water to the foliage, whereasfoual crops, increases in xylem and
leaf area are highly coordinated (Hunt et al., 1991). Tthesallometric relationship between
EWT and VWC was expected to be stronger for crops compangdodlands. Besides water
flow, stems also provide mechanical support for leaves,hwdoatribute to the allometric
relationships between stem and leaves (Niklas, 1994).

One reason for no correlation between VWC and EWWwiaodlands (Fig. 6) is that the
variation about the allometric regression may be ashnas an order of magnitude for trees
(Enquist and Niklas, 2004). Variation in tree biomass raage up to three or four orders of
magnitude, so there may have been an insufficient raripe data (Fig. 6) to obtain a
statistically significant relationship. Most allometrelationships are determined for individual
plants, and the coefficients may be dependent on géadity (Enquist and Niklas, 2004). The
deciduous hardwood plots had large differences in tree dewsieyeas soybean and corn are

grown under relatively uniform densities.

4.5. VWC —-NDII

Based on a strong linear relationship between VWC and E&WI pbetween EWT and
NDII, VWC was linearly related to NDII for corn andys®an (Fig. 7). The standard erroryof
estimates for the SMEXO05 regression equations were 0.46nud.69 mm for corn and

soybean, respectively, and tRévalues for the SMEXO5 regression equations were 0.89 and
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0.87 for corn and soybean, respectively. Then the rgigresquations were compared with the
equations from SMEXO02 (Anderson et al., 2004; Jackson &08i4); the regression equations
for soybean were significantly different betweentie years P = 0.04), whereas the regression
equations for corn were not significantly differeRt< 0.13). Reddy et al. (1998) concluded
water stress affects allometric relationships in sagbeo perhaps the differences in soybean

regression equations between 2002 and 2005 (Fig. 7) were theofelitierences in weather.

4.6. Regional VWC

Using classification of land cover types (Fig. 3), regiovWC was mapped using NDII
(Fig. 8). VWC is an important parameter in the tau-onrageel for retrieving soil moisture
content (Mo et al., 1982; Crosson et al., 2005), and sostor@ content can be determined if the
VWC is under 5 kg f (Jackson, 1993). However, from the NDII-VWC regressiquation for
corn (Fig. 7), VWC of 5 kg fwill occur when NDI! is saturated, so VWC = 4 k¢ mas
selected as the limit for a regional analysis of VWWHg(8). The fractional area of VWE4 kg
m? may be a key input into future algorithms for soil moistostent.

For the 23 June AWIFS image (Fig. 8) and earlier, 12%eofegion had VWG 4 kg
m, these areas were the woodlands in which NDII could nosbkd to determine VWC.
However, for the 17 July Landsat 5 TM image, 35% of thoreljad VWC> 4 kg n¥?, because
of the growth of corn (data not shown). Thus, thetibaal area in which microwave data are
sensitive to changes in soil moisture may change dieatigtover a short period of time,
showing methods are required to monitor these changes.

Therefore, over a region, landcover classificatiomeigher mask out areas where

microwave data are potentially insensitive to soil e content, forests and woodlands with
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high expected VWC, or be used to assign allometric oglshiips. If sensitivity to VWC is
required between 4 and 5 kg?nthen other sensors such as lidar (Lefsky et al., 2002 need

to be included. However, for many vegetation classBdl &&n be used to estimate changes in
VWC over the growing season, assuming a stable alloaretationship exists between VWC

and EWT.

5. Conclusions

First, this study is another contribution indicatihgre is a linear relationship between
NDII and EWT, before NDII saturates at high canopy EVWJanopy EWT was largely
determined from LAI but also from changes in leaf EWha&s leaves were added. Trombetti
et al. (in press) showed that inversion of MODIS dabtagusanopy reflectance models can be
used to get good estimates of EWT. This study and Yilmak én press) show that NDII
would make a good backup algorithm for production of data produectsMODIS.

The relationship between NDIl and VWC was shown tindeect, based on the
allometric relationships between canopy EWT and V\Ai@i the linear relationship between
canopy EWT and NDII. However, NDII saturates around®.@.5, which interfered with
estimation of VWC in corn from 4 to 5 kgnthe sensitivity limit for detection of soil moiseur
content using microwave sensors. However the rapidgehaf VWC in crops indicates that
remotely-sensed indices, such as NDII, are requirethtiegration with microwave data.

Because EWT is a small fraction of VWC for many vegetetypes, remotely-sensed
EWT will not be used itself for microwave retrievafssoil moisture content. Land-cover

classification is used in two ways: first, it will@l selection of the appropriate allometric
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relationship between EWT and VWC, and second, it willged to mask out areas with high

expected VWC.
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Tablel

Dates of image acquisition during Soil M oisture Experiment 2005 (SM EX05)

Sensor Path/Row Dates

T™M5 26/31 30 May, 17 Jul, 18 Aug
TM5 27/31 6 Jun, 22 Ju¥ Jul, 9 Aug
AWIFS 275/39/Quad ¢ 23 Jun

AWIFS 272/41/Quad a 2 Jul

AWIFS 274/41 12 Jul

AWIFS 274/39/Quad c 29 Aug

ASTER n/a 22 May

ASTER n/a 9 Jul

! heavy cloud cover

27



Table2

28

Accuracy assessment of the USDA National Agricultural Statistics Service (NASS) land

cover classification for the SMEXO05 study area.

Ground Data

Class Corn Soybean Woodland Alfalfa Total User
Accuracy (%)
Corn 210 4 2 - 216 97
Soybean 1 122 - 8 131 93
Woodland 12 - 46 - 58 79
Alfalfa 1 - 3 6 10 60
Other - - 2 - 2 0
Total 224 126 53 14 417 -
Producer
Accuracy (%) 94 97 87 43 - -
Overall Accuracy 92 %

! Urban area and other crops (canola, flaxseed, saffjowe
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Fig. 1. A) AWIFS false-color composite for 23 June 2005. Alaek rectangular box is the Soil
Moisture Experiment 2005 (SMEXO05) study area of 22 km in thetiNSouth and 41 km in the
East-West directions, where North is to the top efithage; B) Normalized Difference Infrared

Index (NDII) for 23 June 2005.

Fig. 2. Change of Normalized Difference Infrared Inde®{iNover time for the five woodland
sites and representative fields of corn and soybeatterk for each date indicate the sensor used
to acquire the imagery: (A) Advanced Spaceborne Theemegsion and Reflection Radiometer,

ASTER; (T) Landsat 5 Thematic Mapper; and (W) Advancedé/Miield Sensor, AWIFS.

Fig. 3. USDA NASS land classification of the SMEXO05 stadya. Asterix symbols indicate the

location of vegetation sampling sites. The overallisacy of the classification is 92%.

Fig. 4. Relationship between canopy Equivalent Water Tieis& (EWT), and Normalized
Difference Infrared Index (NDII) for corn, soybean andideous hardwood woodland. The
regression line ig = 1.176% + 0.2303 withR?=0.85 and a standard erroryoéstimate = 0.091

mm.

Fig. 5. Relationship between total Vegetation Water Corft&VC) and canopy Equivalent
Water Thickness (EWT) for corn and soybean. Total VW&@eé sum of stem and canopy water

content. The equation for cornyiss 5.3538x - 0.31 and for soybeanys= 1.3711x + 0.041 with
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R? for corn = 0.87 ané¥ for soybean = 0.48. The standard erroy estimates are 0.49 and 0.17

kg m? for corn and soybean, respectively.

Fig. 6. Relationship between VWC and canopy EWT for decidhatbvood woodlands. There
was no significant correlation between canopy EWAG @WC (P = 0.81). The mean VWC for

all plots was 5.01 kg fwith a standard deviation of 2.51 k¢fm

Fig. 7. Comparison of VWC and NDII between SMEXO05 and Bloiisture Experiment 2002
(SMEXO02). Equation for the SMEXO05 corn regression#s7.694x + 0.7523 (dotted line) with
R? of 0.89 and standard erroryéstimate of 0.46 mm. Equation for SMEX05 soybean
regression iy = 2.2237x + 0.3778 (dashed line) wifR? of 0.87 and standard errorypéstimate
of 0.09 mm. Equation for the SMEX02 corn regressign=s.054x + 0.167 withR? of 0.78

and standard error of y estimate of 0.49 mm. Finallyethetion for SMEX02 soybean
regression iy = 1.3464x + 0.433 (solid line) withR* of 0.615 and standard erroryoéstimate of
0.19 mm. SMEX05 and SMEX02 corn regressions are not sigrifyadifferent (P = 0.13); the
overall regression is y = 7.806x + 0.6894, whereas soybeasseyms are significantly different

(P =0.04).

Fig. 8. VWC (kg nf) of corn and soybean for 23 June 2005 from AWIFS imagepodiénds

were assumed to have constant VWC of 5 Kg m
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