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Abstract 

Vegetation water content (VWC) is one of the most important parameters for the 

successful retrieval of soil moisture content from microwave data. Normalized Difference 

Infrared Index (NDII) is a widely-used index to remotely sense Equivalent Water Thickness 

(EWT) of leaves and canopies; however, the amount of water in the foliage is a small part of 

total VWC. Sites of corn (Zea mays), soybean (Glycine max), and deciduous hardwood 

woodlands were sampled to estimate EWT and VWC during the Soil Moisture Experiment 2005 

(SMEX05) near Ames, Iowa, USA.  Using a time series of Landsat 5 Thematic Mapper, 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Advanced 

Wide Field Sensor (AWiFS) imagery, NDII was related to EWT with R2 of 0.85; there were no 

significant differences among land-cover types.  Furthermore, EWT was linearly related to VWC 

with R2 of 0.87 for corn and 0.48 for soybeans, with a significantly larger slope for corn.  The 

2005 land-cover classification product from the USDA National Agricultural Statistics Service 

had an overall accuracy of 92% and was used to spatially distribute VWC over the landscape.  

SMEX05 VWC versus NDII regressions were compared with the regressions from the Soil 

Moisture Experiment 2002 (SMEX02), which was conducted in the same study area.  No 

significant difference was found between years for corn (P = 0.13), whereas there was a 

significant difference for soybean (P = 0.04).  Allometric relationships relate the size of one part 

of a plant to the sizes of other parts, and may be the result from the requirements of structural 

support or material transport.  Relationships between NDII and VWC are indirect, NDII is 

related to canopy EWT, which in turn is allometrically related to VWC.   

  

Keywords: Corn, Zea mays, soybean, Glycine max, deciduous hardwood woodland, Soil Moisture 

Experiment 2005, Normalized difference infrared index, NDII, EWT, VWC, plant allometry
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1. Introduction 

 

Accurate estimation of soil moisture content is one of the key steps in monitoring land-

atmosphere interactions, global water circulation and carbon cycling (Betts et al., 1996; Koster et 

al., 2004; Orchard and Cook, 1983).  Soil moisture content has been successfully retrieved the 

last two decades with passive and active microwave techniques at various wavebands (Jackson et 

al., 1982, O’Neill et al., 1996).  However, there is a need for improved algorithms.  The Soil 

Moisture Experiment 2005 (SMEX05) was conducted near Ames, Iowa to validate soil moisture 

satellite systems and support soil moisture algorithm development (Jackson, 2005).  The main 

goals of this experiment were the validation of soil moisture content, mapping of soil moisture 

variability, and the study of relationships among soil moisture, vegetation and the atmosphere 

(Jackson, 2005). 

Vegetation water content (VWC, kg m-2), the total amount of water in stems and leaves, 

is one of the most important parameters for the successful retrieval of soil moisture content from 

active and passive microwave remote sensing (Jackson et al., 1982, 2004).  Sensitivity of soil 

moisture to VWC in the tau-omega model (Mo et al., 1982) is indicated by the fact that VWC 

appears in two of the three terms for brightness temperature at the top of a medium with soil and 

vegetation (Njoku et al., 2003).  For example, Bindlish and Barros (2002) states an error of 1 kg 

m-2 in VWC estimation can result in error of 0.1 m3 m-3 gravimetric moisture content for 

relatively dry soils.  If VWC can be estimated using other sensors, then remotely-sensed 

estimates of soil moisture content with microwave data will be more accurate (Jackson et al., 

2004; Anderson et al., 2004; Chen et al., 2005; Yilmaz et al., in press). 
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The foliar water volume per leaf area (m3 m-2, conveniently scaled as mm) is termed the 

equivalent water thickness (EWT) and can be applied to leaves or canopies.  Many studies have 

related foliar water content with reflectances at near-infrared (NIR) and shortwave infrared 

(SWIR) portion of the spectrum (Tucker, 1980; Hardisky et al., 1983; Hunt & Rock, 1989; Hunt, 

1991; Gao, 1996; Cecatto et al., 2002; Fensholt & Sandholt, 2003; Sims & Gamon, 2003; Zarco-

Tejada et al., 2003; Maki et al., 2004; Cheng et al., 2006; Davidson et al., 2006; Trombetti et al., 

in press; Yilmaz et al., in press).  The goal is to estimate EWT from satellites like the Moderate 

Resolution Imaging Spectroradiometer (MODIS) for estimating soil moisture content (Trombetti 

et al., in press; Yilmaz et al., in print).  The problem arises in relating EWT to VWC, since EWT 

is only a fraction of the total water content per plant. 

Allometric relationships (y = β x α, where the exponent, α, may be 1.0 for a linear 

equation) are used to characterize the relative growth in leaf and stem biomass (Niklas, 1994; 

Reddy et al., 1998; Enquist and Niklas, 2002; Jenkins et al., 2004).  It is assumed that an 

allometric relationship exits between VWC and EWT, considering leaves must be supported by 

stems and stems supply water required for transpiration to the leaves.  So the objective of this 

study is to test the relationship between VWC and EWT for three different vegetation types: corn 

(Zea mays), soybean (Glycine max), and deciduous hardwood woodlands.  This objective was 

divided into three steps.  First, EWT was estimated using the vegetation data collected during 

SMEX05 and related to a remote-sensing index.  Then, the relationship between EWT and VWC 

was tested for the three different land cover types.  Finally, VWC was related to remotely sensed 

data from SMEX05 and compared with Soil Moisture Experiment 2002 (SMEX02) vegetation 

data sets (Anderson et al., 2004; Jackson et al., 2004).  
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2. Background 

 

Canopy water content has been estimated by various vegetation indices.  It is well known 

that shortwave infrared reflectances (SWIR) are negatively related to the leaf water content due 

to the large absorption by leaf water (Tucker, 1980; Hunt & Rock, 1989; Ceccato et al., 2001). 

However, an SWIR band alone is not adequate and it must be contrasted with a NIR band to 

estimate the VWC, since the other leaf parameters (e.g. internal leaf structure) also affect the 

SWIR reflectance (Hunt & Rock, 1989; Gao, 1996; Ceccato et al., 2001). 

For this study, a combination of SWIR and NIR bands was used to calculate Normalized 

Difference Infrared Index (NDII) from Hardisky et al. (1983):  

 

NDII = (ρ0.85 – ρ1.65) / (ρ0.85 + ρ1.65)        (1) 

 

where ρ1.65 and ρ0.85 are the reflectances at 1.65µm and 0.85µm wavelengths, respectively.  

Based on the analysis of reflectance spectra and careful consideration of the scattering 

and absorption properties of the atmosphere and vegetation canopies, Gao (1996) developed the 

Normalized Difference Water Index (NDWI): 

 

NDWI = (ρ0.85 – ρ1.24) / (ρ0.85 + ρ1.24)        (2) 

 

where ρ1.24 is the reflectance at 1.24µm wavelength.  NDWI saturates at higher LAI values 

compared to NDII, due to its weaker liquid water absorption feature.  The reason NDII was used 

in this study is that medium-spatial-resolution multispectral sensors [Landsat 5 Thematic Mapper 
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(TM), Advanced Wide Field Sensor (AWiFS), and Advanced Spaceborne Thermal Emission and 

Reflection Radiometer(ASTER)] have bands at 1.65 µm wavelength, but not at 1.24 µm 

wavelength.  

NDII has been studied by numerous authors under different names.  Kimes et al. (1981) 

called this index ND45 because it was a normalized difference of Landsat TM bands 4 and 5.  

They used this index to examine biophysical variables of crops; NDII performed about the same 

as the normalized difference vegetation index (NDVI).  Hardisky et al. (1983) showed NDII was 

related to canopy water content, and provided a name (used here) that does not to refer 

specifically to a single sensor.  Fensholt and Sandholt (2003) coined the name shortwave infrared 

water stress index, SIWSI(6,2), because they used MODIS band 2 and 6 reflectances to observe 

water stress in a semiarid environment.  Jackson et al. (2004), Maki et al. (2004), and Verbesselt 

et al. (2007) used NDII to estimate VWC or EWT, but referred to the index as NDWI.  Xiao et 

al. (2005) referred to NDII as the Land Surface Water Index (LSWI) using MODIS bands 2 and 

6 for paddy rice landcover mapping.  

 

3. Methodology  

 

3.1. Site description 

 

The Walnut Creek watershed, south of Ames, Iowa, USA, has been the focus of research 

by USDA-ARS National Soil Tilth Laboratory (Hatfield et al., 1999).  This region was used for 

the Soil Moisture Experiment 2002 (SMEX02; Anderson et al., 2004; Jackson et al., 2004) and 

the Soil Moisture Atmospheric Coupling Experiment (SMACEX; Kustas et al., 2004).   
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For SMEX05, a regional study area and a smaller intensive study area were selected 

(Jackson, 2005).  The intensive study area is located between 41° 52́ N and 42° 04́ N latitude, 

and 93° 31́ W and 94° 01́ W longitude, for a total area of 22 km by 41 km (Jackson, 2005).  

The study areas in SMEX05 were extended west compared to SMEX02 in order to cover 

deciduous hardwood woodlands along the Des Moines River (Fig. 1A).  The dominant land 

cover in central Iowa is cropland, where corn and soybean cover nearly 90% of the Walnut 

Creek watershed (Doraiswamy et al., 2004).  Topography ranges between 280 m to 330 m with 

an average elevation of 310 m.  The climate is humid with mean average temperature of 10.7 °C.  

Average annual rainfall is 835 mm and the heaviest precipitation months are May and June with 

about one third of the annual total (Jackson, 2005). 

Daily sampling for soil moisture content over the intensive study area was a major 

objective of SMEX05 (Jackson, 2005).  The same crop fields and woodland sites were used for 

both soil moisture and vegetation sampling.  Fields with the dominant land cover, corn and 

soybean, were sampled weekly during the experiment from 15 June to 05 July 2005 to obtain a 

large range in EWT and VWC.  Five deciduous hardwood woodland sites were sampled once, 

because large changes in EWT and VWC were not expected.   

 

3.2. Crop EWT and VWC 

 

At each field, 5 plots were established 50 m apart with directions alternating 90° across 

and along the rows from the field’s entry point.  Plots were geolocated with a Garmin (Olathe, 

Kansas, U.S.A.) eTrex Legend global positioning system enabled with the wide-area 

augmentation system (4-8 m accuracy).  
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For each field, row direction and spacing were determined; almost all rows were 30 

inches apart (0.76 m).  For each plot, plant density was estimated by counting the number of 

plants in two adjacent rows over a transect length of 10.00 meters.  Average plant height and 

canopy cover were estimated using a meter stick.  The number of leaves on an average-looking 

plant per plot was counted to estimate vegetative growth stage. 

One average-looking plant per plot was cut at ground level, placed in a paper bag, sealed 

in a plastic bag, and placed in a cool dark container to avoid water loss as much as possible. 

Upon return, leaves and stems were separated and weighed.  Plant leaf area was measured using 

a LI-3100c leaf area meter (Li-Cor, Inc., Lincoln, Nebraska, USA).  Stems and leaves were dried 

for 48-72 hours at 60 °C and weighed. 

Leaf equivalent water thickness (EWTleaf, mm) was calculated: 

 

EWTleaf  = (FWTleaf - DWTleaf) / dw Aleaf       (3) 

 

where Aleaf is the leaf area (m2), FWTleaf is the leaf fresh weight (kg), DWTleaf is the leaf dry 

weight (kg), and dw is the density of liquid water (1000 kg m-3).  VWC (kg m-2) was calculated: 

 

VWC = η · [(FWTleaf  – DWTleaf) + (FWTstem – DWTstem)]     (4) 

 

where η is plant density (number m-2), and FWTstem and DWTstem are the stem fresh and dry 

weights (kg), respectively.  

Leaf area index (LAI, m2 leaf m-2 ground area) was measured for each crop plot using an 

LI-COR, Inc. (Lincoln, Nebraska, USA) LAI-2000 Plant Canopy Analyzer.  The LAI-2000 
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measurements were taken along the 10-m transect.  This technique was applied under diffuse 

skylight conditions whenever possible (Wells & Norman, 1991).  For some sites on some dates, 

LAI was measured by under direct sunlight; hence, LAI was increased 10% for these plots (John 

Norman, personal communication 2004; Anderson et al., 2004; Yilmaz et al., in press).  Canopy 

EWT (EWTcan, mm) was calculated: 

 

EWTcan  = LAI · EWTleaf         (5)  
where LAI is the corrected leaf area index.  Values of LAI were checked for outliers by 

multiplying the leaf area of an average plant times the plant density (η). 

 

3.3. Woodland EWT and VWC 

 

Deciduous hardwood woodlands occur in the study area near creeks, streams and the Des 

Moines River, where the topography is generally too steep to cultivate.  At each of 5 sites, 4 

plots were established along the path for monitoring soil moisture.  Generally, each plot was 25 

m by 25 m, although depending on the local topography, the sizes of some plots were smaller.  

For each tree over 2 m height, species was determined and diameter (cm) at 1.3 m height was 

measured.  Average height of the trees in the plot was estimated using an inclinometer at 50-m 

distance. 

At each plot, leaf samples were collected with a pruning pole having a maximum reach of 

4.5 m.  The leaves were placed in paper bags, and stored as above.  Upon return, leaves were 

weighed and the areas measured using the LI-3100c leaf area meter.  The samples were then 

dried 48 hours at 60 °C and weighed. 
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With the average height of the plots ranging from 20 m to 30 m, it was not possible to 

sample leaves from the top of the canopy; hence, all of the leaf samples collected were 

considered shade leaves (Abrams & Kubiske, 1990).  For hardwoods and conifers in the central 

United States, Abrams & Kubiske (1990) found there are large differences in specific leaf area 

(kg m-2) between sun leaves and shade leaves.  It is assumed that specific leaf area is related to 

leaf thickness (Knapp & Carter, 1998) and thus to leaf water volume.  Therefore, the ratio of 

specific leaf area of sun leaves to shade leaves (Abrams & Kubiske, 1990) was used to estimate 

EWTleaf  from the measured data on shade leaves. 

LAI was measured with hemispherical digital photographs (Yilmaz et al., in press) at five 

locations in each plot.  Zhang et al. (2005) showed that the hemispherical photos with automatic 

exposure settings underestimated LAI; therefore, a calibration equation based on the Li-Cor LAI-

2000 was applied (Yilmaz et al., in press).  Then, EWTleaf and EWTcan of the woods were 

calculated with Equations 3 and 5, respectively.  

For selected trees, wood cores of 3 mm in diameter and about 10 cm in length were taken 

by drilling at 1.3 m height with an increment borer.  The core samples were placed in plastic 

bags, and stored as above.  Core fresh weights (FWTcore, kg) and dry weights (DWTcore, kg) were 

recorded upon return and after drying for 48-72 hours at 60 °C, respectively.  The density of 

wood (d) was taken to be 600 kg m-3, an average value for deciduous hardwood species in the 

region (Birdsey, 1992).  Tree wood volume (V, m3) was calculated using region-specific 

equations based on stand height and tree diameter (Hahn & Hansen, 1991), in which the stand 

site index was estimated by the stand height.  Woodland VWC (kg m-2) was calculated: 

 

VWC = ΣV · (1 – DWTcore / FWTcore ) · d / A  + LAI · EWTleaf · dw    (6) 
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where ΣV is the wood volume (m3) summed for each tree in the plot, A is the plot area (m2), dw 

is the density of liquid water, and LAI and EWTleaf are the corrected values.  

 

3.4. Satellite Data  

 

For SMEX05, a time series of 8 scenes from Landsat 5 TM, 4 scenes from AWiFS and 2 

scenes from ASTER satellites were acquired, geoereferenced and atmospherically corrected 

(Table 1).  The study site was mostly under clouds for the 9 August TM scene and two scenes 

(22 June TM and 1 July TM) have about 40% cloud cover, so these images were not processed 

further.  The path 27/row 31 TM scenes and both ASTER scenes did not cover the full study 

area.  The scenes were registered by using the Environment for Visualizing Images (ENVI) 

version 4.1 (Research Systems, Inc., Boulder CO, USA). 

Digital numbers for TM, AWiFS and ASTER images were converted into radiances and 

then atmospherically corrected into land-surface reflectances (Yilmaz et al., in press).  The 

atmospheric correction for all the channels was made using the MODTRAN model (Adler-

Golden et. al., 1999).  As input data for MODTRAN, sun photometer data were obtained through 

the NASA Goddard Space Flight Center AERONET network (http://aeronet.gsfc.nasa.gov) for 

the site in Ames, Iowa (located in the SMEX05 intensive study area).  Ozone content data were 

obtained from Environment Canada (http://woudc.ec.gc.ca/cgi-bin/selectMap/), radiosonde data 

were obtained from National Oceanic and Atmospheric Administration 

(http://raob.fsl.noaa.gov/), and meteorological data were obtained from nearby weather stations. 

NDII (Fig. 1B) was calculated using Equation 1 from the land-surface reflectances (Fig. 1A). 
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The 2005 USDA National Agriculture and Statistics Service (NASS) 30-m land-cover 

classification for the state of Iowa was acquired (http://www.usda.gov/nass/).  The NASS land-

cover classification was compared to ground data acquired during SMEX05.  Teams of people 

drove around the SMEX05 study area, observed the land cover type, and determined latitude and 

longitude using a Garmin global positioning system.  The accuracy of the classification was 

assessed using the methods of Congalton & Green (1999). 

 

4. Results and Discussion 

 

4.1. Time course of NDII 

 

 Starting with the ASTER image on 22 May 2005 (Table 1), NDII for soybean and corn 

fields were low at about -0.35 to -0.30, the values for bare soil, and increased over time until mid 

July (Fig. 2).  The NDII for corn, soybean, and woodland sites showed large differences in June, 

averaging -0.1 for soybean, 0.1 for corn, and 0.3 for woodland sites (Fig. 2).  In July and August, 

NDII for corn and soybean was equal to that for woodlands.  NDII for the woodland plots 

showed no trend over time (Fig. 2), because spring leaf-out occurred about four weeks prior to 

the first image acquired.  

 There were no apparent differences in NDII calculated from the different multispectral 

sensors, therefore the data were combined to examine the relationship of NDII to EWT during 

SMEX05.  Whereas the differences in band pass for the different sensors will create differences 

in NDII for the same pixel on the same date, the differences in NDII were probably small 

compared to the change in NDII over time for corn and soybean, and may be small compared to 
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possible errors from the atmospheric correction.  The effect of sensor on NDII value would have 

been tested if scenes from the TM, ASTER or AWiFS were acquired for the same date.  

 

4.2. Landcover 

 

Based on the NASS classification, the dominant landcover type for the study area was 

cropland, with 34% of the area in corn and 30% of the area in soybean (Fig.3).  Moreover 

pasture and woodlands cover 17% and 12% of the study area, respectively.  The SMEX02 study 

area (100 by 50 km; Doraiswamy et al., 2004) was centered 25 km to the east of the SMEX05 

study area and did not include the woodlands next to the Des Moines River.  The differences in 

the percent cover of crops (90% for SMEX02 and 65% for SMEX05) are due to offset distance 

between the study areas.  

The NASS classification has an overall accuracy of 92% for the SMEX05 area (Table 2).  

The k-hat statistic is 0.88 ± 0.021 standard error, so the classification is highly significant (P < 

0.001).  Corn and soybean fields were classified with high user and producer accuracies, whereas 

most of the alfalfa fields on the ground were classified as soybean (Table 2).  Two of the 

woodland sites were misclassified as other crops (e.g. canola, flaxseed, safflower) and as an 

urban area.  Furthermore some of the corn fields were misclassified as woodland resulting in a 

user accuracy of 79% for woodlands. 
  

4.3 LAI - EWT – NDII 

 

From the start to the end of SMEX05, LAI for corn increased from 0.37 to 3.29 and LAI 

for soybean increased from 0.16 to 1.97 m2 m-2.  EWTleaf increased from 0.26 to 0.29 mm for 
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corn and from 0.16 to 0.19 mm for soybean, because the newer larger leaves tended to be 

thicker.  Therefore, EWTcan increased from 0.11 to 0.91 mm for corn and from 0.02 to 0.57 mm 

for soybean (Fig. 4).  

Uncorrected mean LAI (± standard deviation) was 2.32 ± 0.39 m2 m-2 for the deciduous 

hardwood woodland sites.  Because the hemispherical photographs were not underexposed 

(Zhang et al., 2005), the resulting woodland LAI were much lower than expected.  Using the 

calibration from Yilmaz et al. (in press), the corrected mean LAI was 4.24 ± 0.75 m2 m-2.  The 

shade-leaf EWT averaged 0.08 mm.  With the sun-shade leaf correction (Abrams & Kubiske, 

1990), the average leaf EWT was 0.16 mm, which is much closer to the values for other 

deciduous hardwood species (Hunt & Rock, 1989; E. R. Hunt, Jr., unpublished data).  Therefore, 

the average canopy EWT (corrected for both LAI and sun-shade leaf EWT) was 0.62 ± 0.17 mm. 

For the same period, NDII values increased from -0.07 to 0.45 and from -0.18 to 0.17 for 

corn and soybean, respectively, whereas NDII for the woodland sites averaged 0.37.  NDII was 

linearly related to canopy EWT for corn, soybean and woodland (Fig. 4).  Using dummy 

variables to separate the effects of species on the NDII – EWT relationship (Fig. 4), the 

regression equation for soybean was significantly different from the equations for corn and 

woodland (P = 0.02).  However, analysis of the residuals indicated that 6 soybean plots sampled 

on the first two days (low LAI from 0.16 to 0.25 m2 m-2) strongly biased the regression 

coefficients.  Very low LAI was also associated with very low soybean cover, where the 

reflectance of the soil or multiple scattering between plant and soil could overwhelm the signal 

from vegetation (Ray and Murray, 1996).  When the 6 plots were removed from the analysis, the 

regression equations for soybean and woodlands were not significantly different from the 

equation for corn (P = 0.14 and P = 0.07, respectively).  The overall NDII – EWT regression 
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equation (Fig. 4) has R2 of 0.85 and the standard error of y estimate of 0.093 mm, which is about 

equal to an LAI of 0.5 m2 m-2.  The strong linear relationship between canopy EWT and NDII 

over the range of data obtained during SMEX05 supports the conclusions of previous studies 

(Yilmaz et al., in press; Ceccato et al., 2002; Davidson et al., 2006).  Data from Hunt (1991) and 

SAIL model simulations (not shown) indicate that the NDII – EWT relationship will begin to 

saturate at NDII from 0.4 to 0.5. 

 

4.4. VWC – EWT 

 

VWC was linearly related to canopy EWT for each crop type (Fig. 4).  For the corn and 

soybean regression equations respectively, the R2 were 0.87 and 0.48 and the standard error of y 

estimates were 0.49 and 0.17 kg m-2 (Fig. 5).  The VWC – EWT regressions of corn and soybean 

were significantly different using dummy variable regression (P < 0.001; Fig. 5).  

On the other hand, there was no significant relationship between woodland VWC and 

canopy EWT (P = 0.81; Fig. 6).  The DWTcore/FWTcore ratio averaged 0.573 ± 0.0747.  There 

were too few data to detect differences among species.  Using a single factor Analysis of 

Variance (ANOVA), there was no significant difference in DWTcore/FWTcore among sites (P = 

0.25).  Thus, the primary variation in VWC of deciduous hardwood woodlands was stand wood 

volume, determined primarily from tree diameter and density.  Canopy EWT was a small 

fraction of total VWC (Fig. 6), so there was no ability to predict VWC from NDII.  Therefore, 

woodland VWC was assigned the average plot value of 5.01 kg m-2 for regional analyses.  

 Tree wood volume and leaf area have strong allometric relationships with tree diameter 

(Niklas, 1994; Jenkins et al., 2004), so a relationship between VWC and EWT was expected but 
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not found (Fig. 6).  There may be a stronger relationship between tree sapwood cross-sectional 

area at 1.3 m height and leaf area because of the requirement for the active xylem to supply 

water to the leaves for transpiration (Waring et al., 1982).  For trees, several years of annual 

xylem growth may supply water to the foliage, whereas for annual crops, increases in xylem and 

leaf area are highly coordinated (Hunt et al., 1991).  Thus, the allometric relationship between 

EWT and VWC was expected to be stronger for crops compared to woodlands.  Besides water 

flow, stems also provide mechanical support for leaves, which contribute to the allometric 

relationships between stem and leaves (Niklas, 1994).   

One reason for no correlation between VWC and EWT for woodlands (Fig. 6) is that the 

variation about the allometric regression may be as much as an order of magnitude for trees 

(Enquist and Niklas, 2004). Variation in tree biomass may range up to three or four orders of 

magnitude, so there may have been an insufficient range in the data (Fig. 6) to obtain a 

statistically significant relationship.  Most allometric relationships are determined for individual 

plants, and the coefficients may be dependent on plant density (Enquist and Niklas, 2004).  The 

deciduous hardwood plots had large differences in tree density, whereas soybean and corn are 

grown under relatively uniform densities.   

 

4.5. VWC –NDII 

 

Based on a strong linear relationship between VWC and EWT, and between EWT and  

NDII, VWC was linearly related to NDII for corn and soybean (Fig. 7).  The standard error of y 

estimates for the SMEX05 regression equations were 0.46 mm and 0.09 mm for corn and 

soybean, respectively, and the R2 values for the SMEX05 regression equations were 0.89 and 
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0.87 for corn and soybean, respectively.  Then the regression equations were compared with the 

equations from SMEX02 (Anderson et al., 2004; Jackson et al., 2004); the regression equations 

for soybean were significantly different between the two years (P = 0.04), whereas the regression 

equations for corn were not significantly different (P = 0.13).  Reddy et al. (1998) concluded 

water stress affects allometric relationships in soybean, so perhaps the differences in soybean 

regression equations between 2002 and 2005 (Fig. 7) were the result of differences in weather.  

 

4.6. Regional VWC 

 

Using classification of land cover types (Fig. 3), regional VWC was mapped using NDII 

(Fig. 8).  VWC is an important parameter in the tau-omega model for retrieving soil moisture 

content (Mo et al., 1982; Crosson et al., 2005), and soil moisture content can be determined if the 

VWC is under 5 kg m-2 (Jackson, 1993).  However, from the NDII-VWC regression equation for 

corn (Fig. 7), VWC of 5 kg m-2 will occur when NDII is saturated, so VWC = 4 kg m-2 was 

selected as the limit for a regional analysis of VWC (Fig. 8).  The fractional area of VWC ≥ 4 kg 

m-2 may be a key input into future algorithms for soil moisture content. 

For the 23 June AWiFS image (Fig. 8) and earlier, 12% of the region had VWC ≥ 4 kg  

m-2,  these areas were the woodlands in which NDII could not be used to determine VWC.  

However, for the 17 July Landsat 5 TM image, 35% of the region had VWC ≥ 4 kg m-2, because 

of the growth of corn (data not shown).  Thus, the fractional area in which microwave data are 

sensitive to changes in soil moisture may change dramatically over a short period of time, 

showing methods are required to monitor these changes. 

Therefore, over a region, landcover classification can either mask out areas where 

microwave data are potentially insensitive to soil moisture content, forests and woodlands with 
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high expected VWC, or be used to assign allometric relationships.  If sensitivity to VWC is 

required between 4 and 5 kg m-2, then other sensors such as lidar (Lefsky et al., 2002) may need 

to be included.  However, for many vegetation classes, NDII can be used to estimate changes in 

VWC over the growing season, assuming a stable allometric relationship exists between VWC 

and EWT. 

 

5. Conclusions 

 
First, this study is another contribution indicating there is a linear relationship between 

NDII and EWT, before NDII saturates at high canopy EWT.  Canopy EWT was largely 

determined from LAI but also from changes in leaf EWT as new leaves were added.  Trombetti 

et al. (in press) showed that inversion of MODIS data using canopy reflectance models can be 

used to get good estimates of EWT.  This study and Yilmaz et al. (in press) show that NDII 

would make a good backup algorithm for production of data products from MODIS.   

The relationship between NDII and VWC was shown to be indirect, based on the 

allometric relationships between canopy EWT and VWC, and the linear relationship between 

canopy EWT and NDII.  However, NDII saturates around 0.4 to 0.5, which interfered with 

estimation of VWC in corn from 4 to 5 kg m-2, the sensitivity limit for detection of soil moisture 

content using microwave sensors.  However the rapid change of VWC in crops indicates that 

remotely-sensed indices, such as NDII, are required for integration with microwave data. 

Because EWT is a small fraction of VWC for many vegetation types, remotely-sensed 

EWT will not be used itself for microwave retrievals of soil moisture content.  Land-cover 

classification is used in two ways: first, it will allow selection of the appropriate allometric 
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relationship between EWT and VWC, and second, it will be used to mask out areas with high 

expected VWC.   
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Table 1 

Dates of image acquisition during Soil Moisture Experiment 2005 (SMEX05) 

__________________________________________________ 

Sensor    Path/Row   Dates 

__________________________________________________ 

 

TM 5             26/31             30 May, 1 Jul1, 17 Jul, 18 Aug 

TM 5             27/31             6 Jun, 22 Jun1, 24 Jul, 9 Aug1 

AWiFS    275/39/Quad c    23 Jun 

AWiFS    272/41/Quad a    2 Jul 

AWiFS    274/41            12 Jul 

AWiFS    274/39/Quad c    29 Aug 

ASTER    n/a                      22 May 

ASTER    n/a                      9 Jul 

____________________________________________________ 

1 heavy cloud cover 
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Table 2 

Accuracy assessment of the USDA National Agricultural Statistics Service (NASS) land 

cover classification for the SMEX05 study area.  

_____________________________________________________________________________ 
Ground Data 

_____________________________________________________________________________ 
 

Class   Corn  Soybean Woodland Alfalfa  Total  User 
           Accuracy (%) 
_____________________________________________________________________________ 
 
Corn   210  4  2  -  216  97 
 
Soybean  1  122  -  8  131  93 
 
Woodland  12  -  46  -  58  79 
 
Alfalfa    1  -  3  6  10  60 
 
Other1    -  -  2  -  2  0 
 
Total   224  126  53  14  417  - 
 
 
Producer  
Accuracy (%)  94  97  87  43  -  - 
____________________________________________________________________________ 
 
Overall Accuracy           92 % 
____________________________________________________________________________ 
    
1 Urban area and other crops (canola, flaxseed, safflower)  
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Fig. 1. A) AWiFS false-color composite for 23 June 2005. The black rectangular box is the Soil 

Moisture Experiment 2005 (SMEX05) study area of 22 km in the North-South and 41 km in the 

East-West directions, where North is to the top of the image; B) Normalized Difference Infrared 

Index (NDII) for 23 June 2005.  

 
Fig. 2.  Change of Normalized Difference Infrared Index (NDII) over time for the five woodland 

sites and representative fields of corn and soybean.  Letters for each date indicate the sensor used 

to acquire the imagery: (A) Advanced Spaceborne Thermal Emission and Reflection Radiometer, 

ASTER; (T) Landsat 5 Thematic Mapper; and (W) Advanced Wide Field Sensor, AWiFS.  

 

Fig. 3. USDA NASS land classification of the SMEX05 study area. Asterix symbols indicate the 

location of vegetation sampling sites.  The overall accuracy of the classification is 92%.  

 
 
Fig. 4. Relationship between canopy Equivalent Water Thickness (EWT), and Normalized 

Difference Infrared Index (NDII) for corn, soybean and deciduous hardwood woodland.  The 

regression line is y = 1.1767x + 0.2303 with R2=0.85 and a standard error of y estimate = 0.091 

mm.  

 

Fig. 5. Relationship between total Vegetation Water Content (VWC) and canopy Equivalent 

Water Thickness (EWT) for corn and soybean. Total VWC is the sum of stem and canopy water 

content. The equation for corn is y = 5.3538 x - 0.31 and for soybean is y = 1.3711 x + 0.041 with 
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R2 for corn = 0.87 and R2 for soybean = 0.48. The standard error of y estimates are 0.49 and 0.17 

kg m-2 for corn and soybean, respectively. 

 

Fig. 6. Relationship between VWC and canopy EWT for deciduous hardwood woodlands. There 

was no significant correlation between canopy EWT and VWC (P = 0.81). The mean VWC for 

all plots was 5.01 kg m-2 with a standard deviation of 2.51 kg m-2. 

 

Fig. 7. Comparison of VWC and NDII between SMEX05 and Soil Moisture Experiment 2002 

(SMEX02). Equation for the SMEX05 corn regression is y = 7.694 x + 0.7523 (dotted line) with 

R2 of 0.89 and standard error of y estimate of 0.46 mm. Equation for SMEX05 soybean 

regression is y = 2.2237 x + 0.3778 (dashed line) with R2 of 0.87 and standard error of y estimate 

of 0.09 mm.  Equation for the SMEX02 corn regression is y = 9.054 x + 0.167 with R2 of 0.78 

and standard error of y estimate of 0.49 mm. Finally, the equation for SMEX02 soybean 

regression is y = 1.3464 x + 0.433 (solid line) with R2 of 0.615 and standard error of y estimate of 

0.19 mm. SMEX05 and SMEX02 corn regressions are not significantly different (P = 0.13); the 

overall regression is y = 7.806x + 0.6894, whereas soybean regressions are significantly different 

(P = 0.04). 

 

Fig. 8. VWC (kg m-2) of corn and soybean for 23 June 2005 from AWiFS imagery. Woodlands 

were assumed to have constant VWC of 5 kg m-2. 
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