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Abstract

The market for insuring insect damage is
far from complete. This study introduces a
new type of derivative instrument—insect
derivatives—that provide growers a
market-based means of transferring insect
risk to speculators or others who may
profit from higher insect populations. A
risk-neutral valuation model is developed
and applied to Bermnisia tabaei population
data. Economic simulation models show
how insect derivatives can improve risk-
return results for a representative cotton
farm in the Imperial Valley of California.
The results suggest that insect derivatives
may become important risk management
tools for a wide range of growers.
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Estimates of the economic damage
caused by invasive species of all types in
the United States are alarmingly high.
Pimentel et al. (2000) estimate the total
economic loss to invasive species at $137
billion per year. Although insects form
only part of the larger invasive species
probiem, they hold perhaps the most
potential for significant economic
damage, Indeed, consider the example of
the glassy-winged sharpshooter (a vector
or carrier for Plerce's disease). If left
unchecked, many believe this one
species would likely destroy the entire
$3.3 billion California grape industry
[University of California Agricultural and
Natural Resources (UCANR], 2004].!

Beyond the direct impacts on yield and
quality due to feeding and reproduction,
the indirect costs of insect infestation
include widespread ecological damage
due to chemical control activities, the
budgetary cost of government
eradication efforts, and the loss of
important export markets, to name a few.
While current chemical and biological .
control methods are becoming
increasingly effective in managing pest
outbreaks, they are costly. In fact, the
total amount spent in the United States
on agricultural insecticides in 2001 was
approximately $1.326 hillion (Kiely,
Donaldson, and Grube, 2004). Clearly,
growers need a method of controlling
net only the agronomic risk from insect

' The glassy-winged sharpshooter also carries
strains of Xylelln fastidiosa that threaten California
citrus, alfalfa, almonds, stone fruits, and ornamentals—
a total of some $27 billion in market value {UCANE,
2004),
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infestations, but the economic risk as
well.2

In the past, economists created dynamic
optimization models intended to produce
recommendations for insecticide
application rates and thresholds.
Typically, these models maximize the
present value of profit from a given
orchard or crop by choosing an
insecticide application rate based on
thresholds estimated from insect
population growth and yield damage
functions {e.g., Regev, Guiterrez, and
Feder, 1976; Babcock, Lichtenberg, and
Zilberman, 1992; Hof, 1998; Marsh,
Huffaker, and Long, 2000; Eiswerth and
Johnson, 2002).

An optimal solution equates the marginal
present value of reducing pest damage
with the marginal cost of using either
biological or chemical control techniques.
This line of research has played an
Important role in the pest management
literature because optimization models
allow growers to control specific sources
of economic loss in: a profit-maximizing
way. However, economic optimization
does not imply the elimination of risk, or
the variability of profit. Even ifa

grower were to follow an optimal control
program, the cost of insect management
will vary from season to season depending
on the realization of actual insect densities
and a variety of other environmenta]
factors.

Growers have limited access to insurance
products that would otherwise allow them
to manage economic risk. Indeed, the
market for pest risk management is far
from complete. It is well known that
private insurance markets in agriculture
fail for reasons of moral hazard, adverse
selection, and the high correlation of risks
borne by growers. Moreover, government-

*The importance of invasive specles in general is
indicated by the amount of research activity on this
topic. In fact, as this paper was golng to press, a
special issue of the Agricultural and Resource
FEeonomnics Review 35(April 2006) was dedicated to the
economics of invasive specles.,

subsidized insurance, particularly for
speciality crops, has a history of low
participation and excessively high

budget costs (Knight and Coble, 1997;
Richards and Manfredo, 2003). Many
economists emphasize the role of public
policy in mitigating the economic damage
caused by insects {Carter, Chalfant, and
Goodhue, 2004). Costly government
intervention, however, is not the only
solution and may, in fact, be less efficient
than a market-based one. This study
presents a new approach growers can use
to mitigate the financial risk from invasive
pests by transferring it to others through
market-traded instruments known as
insect dertvatives.

Insect derivatives, or “bug options,”
represent a market-based means for
growers to transfer risk to others who may
profit from higher insect populations.
Derivatives are, in general terms, contracts
between two parties specifying a future
exchange of money where the amount
depends on, or is derived from, the value
of an underlying asset or index value.

A swap is perhaps the simplest example of
a derivative. To create an insect swap, a
grower would enter into a contract (the
insect derlvative} with a counterparty that
specifies how much it will pay to the
grower should a specific pest population
exceed a certain agreed level.® If the
population is below the agreed level, then
the contract would require payment by the
grower to the counterparty. Both parties
have an incentive to sign this contract’
because the counterparty would
presumably suffer lower revenues when
pest populations are low and the grower
would have relatively high pesticide costs

?Clearly, the “agreed level” would be one that is not
actively managed by the grower. Counterparties would
agree to an objectlve measurement standard such as
traps at the nearest experiment station, or another,
orchard-specific sanctuary. If the grower is pald for
higher insect counts, then there is no incentive for
fraud, Note that this example assumes growers spray
only when insect populations are realized, and not as a
matter of course at the start of a growing season. This
assuimption is consistent with current integrated piest
management praciice.
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when populations rise.* In this example,
both growers and counterparties are
effectively managing their net income risk,

Although such derivatives seem a natural
and logical outgrowth of the normal course
of agribusiness, there are several reasons
why they have not emerged to this
point—reasons which careful academic
research, such as that developed in this
study, can help overcome. Specifically, the
primary reason bug options have not yet
gained acceptance is the lack of an agreed
pricing mechanism. Therefore, the
objective of this analysis is to develop a
simple and intuitive valuation method for
any species evolving within any well-
defined agricultural region.

By creating a relatively straightforward,
economically justifiable way of pricing bug
options, this research seeks to ensure that
insect derivatives become actively traded
between growers and their natural
counterparties (chemical companies,
insurance companies, insectaries, and
many others). Growers, chemical
stuppliers, and consumers in general each
have an interest in the outcome of this
research. First, growers will be able to
plan: more effectively, have greater access
to lower cost sources of capital, allocate
existing capital more effectively, pay lower
taxes, on average, due to the fundamental
convexity of tax schedules, or avoid the
direct and indirect costs of bankruptey
{Smithson, 1998). Second, by trading
Insect derivatives, chemical companies will
be able to smooth revenue streams from
limited-use chemicals, thus increasing the
likelihood that any risk-sensitive capital
budgeting analysis will recomumnend their
development. Third, to the extent that
growers substitute derivatives for other
methods of insect management, active

*In the application below, we consider insect
options. An option contract would involve the right,
but not the obligation, to either buy {call) or sell (put)
the underlying index at a fixed value (the strike price).
A cal] option, for example, would rise in value if the
Index rises above the strike price, while a put option
would rise if the index falls. A grower who buys a call
option would be protected in the event the pest
population grows.

trading in insect derivatives can result in
reduced levels of insecticides or other
biologically harmful control techniques.®
Finally, if growers are able to trade
instruments which rise in value with the
demand for pest control, then they will
have an incentive to use the most
efficient pest management techniques
available, thereby creating an “in-the-~
money” position with respect to the insect
derivative.

Our pricing model relies on recent
developments in the theory of "risk-
neutral” pricing of derivative securities.
Whereas financial options—options on
stocks or commodity futures—are
commonly priced using models derived
from sophisticated arbifrage arguments,
there are no complementary securities
upon which to base similar methods in the
case of insect derivatives. In the absence
of such riskless hedging opportunities, it is
often the case that analysts must resort to
equilibrium pricing models that take into
account the market price of risk, or the
risk premium required by investors in
order to purchase a security which is likely
to add to the overall riskiness of their
portfolio (Cao and Wei, 1999; Richards,
Manfredo, and Sanders, 2004},

However, if insect population growth is
independent of the returns to a broad
market portfolio of other securities, then
we can use a risk-neutral approach (Cox,
Ingersoll, and Ross, 1985), which does not
require an estimate of the marlket price of

®Note that if chemical insecticides are priced
competitively, growers should be indifferent between
spraying and not spraying. Growers can either let
insect populations grow unabated and accept payment
on the derivative to offset real damage, or spray to
control insect population growth and use the derivative
payment to offset chemtcal costs. In the former case,
derivatives and chemicals are substitutes, whereas in
the latter they are complements. Using insect
derivatives to reduce insecticide cost is stmilar to
growers who may use rainfall derivatives to offset
irrigation costs {Turvey, 1999). It is reasonable to
assume, although substitution remains a possibllity,
most growers will use chemicals, or other integrated
pest management (IPM) rethods as part of a program
of good farming practices, and use insect derivatives to
offset the cost of doing so.
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risk. Risk-neutral valuation involves
finding the expected value of the
poputation level at the agreed termination
date of the derivative, comparing the
expected value to an agreed “strike” or
irigger population level, and discounting
the difference (multiplied by a notional
dollar figure) back to the contract date at
the risk-free interest rate.

When the market price of risk does not
enter the calculation, risk-neutral
valuation is similar to the method used
by insurance companies to determine
Insurance premia, or actuarial pricing
{Hull, 2005). We demonstirate the
simplicity of this method using two years
of field-trial data of Bemnisia tabaci
(Homoptera: Aleyrodidae, also known as
whitefly) populations in California cotton
(Naranjo, Chu, and Henneberry, 1996).%
After arriving at a price series for a family
of derivatives at different strike population
levels, a stochastic pro forma financial
statement simulation model is used to
demonstrate the effectiveness of insect
derivatives in mitigating the financial risk
caused by insect infestation.

The remainder of the paper is organized as
follows. The first section describes the
pest insect B. tabaci data. In the second
section, we derive a bioeconometric model
of insect population growth, including
separate components for the stochastic
and deterministic elements of population
growth—or the random and nonrandom
parts, respectively. This section also
describes a simple model of cotton yield
that incorporates both insect population
and control activities. A third section
describes the risk-neutral valuation model
and the particular assumptions made in
implementing it with the B. tabaci
example. The fourth section provides an
explanation of how we evaluaie the
effectiveniess of insect derivatives in
mitigating financial risk, including a

Naranjo, Chu, and Henneberry {1996) report 5.
tabaci was responsible in 1994 for damaging 345,000
ha of cotton In Arizona and southern California,
reducing total yleld by 3.6 million kg.

description of a simple stochastic
simulation model and the associated
measures of risk exposure. A final section
provides the estimation and simulation
results and offers some general conclusions
for the likely value of an insect derivative-
based risk management program.

Empirical Model of Insect
Population Growth

Insect Population Data

The data for this study consist of two years
of experimental field-irial data on B. tabaci
pepulation growth and yield damage
gathered by researchers based at the
Western Cotton Research Laboratory
{WCRL) in Phoenix, Arizona, using cotton
fields in Brawley, California (Naranjo, Chu,
and Henneberry, 1996; Naranjo et al.,
1998). Weekly counts of aduit B. tabaci
were collected each year over a 16-week
season for 11 different plots. Plots
correspond to various insecticide treatment
intensitles, from no applications in a given
week to 15 insecticide applications per
week. .By varying insecticide treatment
levels, the field-trial data provide
information on the impact of frequency
and dose on population levels at different
times during the season. Control efforts
cause the data to exhibit greater variability
than would otherwise be the case, which
more clearly identifies the underlying
population diffusion process.

B. tabact is a particularly nefarious pest in
the U.S. Southwest as they tend to travel
large distances, reproduce quickly, and
impair yields significantly by depriving the
plant of vital nutrients. Yield samples
taken at harvest for each plot provide data
regarding the yield-injury relationship in
cotton. Table 1 gives a summary of the
experimental insect data.

Data for the risk management
simulation model are taken from a
representative Imperial County cotton
farm budget prepared by University of
California Cooperative Extension officials
(University of California, 2005).
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Table 1. Summary of Bemisia tabaci Trial Data: Brawley, CA (1993-1994)

Description N Mean Std. Dev. Minimum Maximum
Random Parameters:
Treatments {no./week) 358 8.637 4.174 0.000 15.000
Eggs (no./cm?) 358 7.640 19.879 0.000 136,280
Nymphs (no./cm?) 358 1.814 4.546 C.00C 34.180
Adulis {no./leaf) 358 30.637 32.028 3.314 128.050
Yield (kg/ha) 25 1,615,094 377.683 801.750 2,007.250
Fixed Parameter Values:
Risk-Free Rate 3.0%
Cotton Price ($/kg) 1.32
Days to Expiry 105

Operating costs reflect all land
preparation, seeding, growing, and
harvesting costs, and are expressed in
current, 2004 values. Growing costs
include the material and labor costs for a
number of insect treatments equal to the
sample average from the B. tabaci trial
data. Revenues, on the other hand, are
calculated using 2004 harvest prices
obtained from the USDA’s Economic
Research Service (2005).

Bioeconometric Model of Insect
Population Growth

Insect populations at a particular location
vary from week to week and from year to
year. While some of the observed
population growth within a season is
predictable, there is a significant random
component. In other words, the basic
process driving the number of insects at
one location consists of a deterministic
and a stochastic component. Therefore,
we follow the approach taken by Alaton,
Djehiche, and Stillberger {2002} in their
modeling of weather processes, and first
remove the deterministic mean part of
insect population growth before modeling
random variations about the mean.

Insect populations are constrained by
several biological factors: {a) growth rates
depend on the number of adults available
to reproduce; (b) reproduction tales time;
{c) the environment has a finite capacity to

support insect populations; and {d} control
activities, typically through insecticides,
tend to be quite effective in reducing
population counts. Given these facts, the
deterministic part of insect population
growth can be modeled as an exponential
function commeon to many other types of
biceconomic growth processes (Clark,
1990; Eiswerth and Johnson, 2002):

dB,"

B/
(1) —= alB;"[l - "f{_] '

dt
for the mean insect population (B™)
growing at a rate e, in an environment
with carrying capacity K. The differential
equation (1) can be solved for the expected
population level at any time { (see the
Appendix), which provides a convenient
expression for the mean insect population:

K

2 B'=| ————
1+de™!

] -glc),

where insecticide applications (¢} reduce
insect numbers according to the control
function g, and d represents the starting
population value (B,) relative to carrying
capacity: (K -~ By)/B,. In the empirical
application below, g is assumed to be
quadratic in order to capture the likely
diminishing marginal returns to
insecticide application. Entomological
research finds that mean population may
also be a function of temperature, host
plant abundance, other non-chemical
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abatement efforts, or natural enemy
population (Eiswerth and Johnson, 2002).7

Insect population growth is not entirely
deterministic. Random varlations from the
mean population level are assumed to be
governed by a Brownian motion process:

(3) dB,=ndt+odz,

where n is the drift rate per unit of time
(dt), o is the standard deviation of the
process, and dz is an increment of a
standard Weiner process with zero mean
and variance equal to dt.® As noted by
Sunding and Zivin {2000}, equatiosn (1}
captures several empirical regularities
observed across Insect groups.®
Specifically, per period changes in the
population as well as the population itself
are normally distributed, population levels
are always nonnegative, and short-run
dynamics are dominated by the volatility
component whereas long-term dynamics
are dominated by trend.

It is not likely, however, that any trend
away from the mean in (2) would be
sustained over the long run as insect
populations cannot grow without bound,
nor is it likely that they disappear without
some outside Influence, Therefore, the
process in (3) is modified to include a
mean-reversion term whereby:

(4) dB,=x(B[" - B,)dt+odz,

7 In the empirical application described below,
neither daily temperature nor precipitation were
significant determinants of insect population levels.
Data on other factors were not available. Estimation
and hypothesis testing results of the growth models
that included weather variables are avallable from the
authors upon request.

8The drift term 11 is the drift in the stochastic
process away from the mean function deseribed in (1).
Therefore, it 1s fundamentally different from the
natural growth rate («) of the mean data-generating
process.

?Sunding and Zivin (2000) model population
growth as a geometric Brownlan motion; however, in
our model, the dependence of growth on existing
population levels Is captured through the mean
function (2), se the remaining variation is lkely
independent of current populatton levels.

where k is the rate of reversion to the
mean. Further, insect populations are
also subject to perlodic “spikes” or periods
of rapid growth driven by environmental
factors otherwise not accounted for in the
model. We model these instances as
jumps in the stochastic process
estimated above {Merton, 1976; Jorion,
1989; Natk and Lee, 1990}, so the most
general form of the population equation
becomes:

(6) dB,=(x(B- B, -Ad)dt
+odz + dg,

where jumps occur according to a Poisson
process g with average arrival rate A and
a random percentage shock ¢. The
random shock, in turn, is assumed to

be lognormally distributed with mean

¢ - 0.58%, and variance 8%. The Poisson
process g describes a random variable
that assumes a value of zero with
probability 1 - A, and a value of one with
probability A.

Estimates of (5) are cbtained by maximum-
likelihood estimation over the entire
sample data set, using the likelihood
function:

(6) L(B)=-Th - 12" In(27)

o )’i; AT 1
o P
~(aB, - (x(B[- By - ng))®
2{o + §%n) '

-

where T is the total number of time-series
observations, and Nis defined as a
number of jumps sufficiently large to
include all potential jumps in the observed
data (six proved sufficient in this
application}. Further, we approximate the
change of B, (dB,) with a discrete change:
(B, - B,.,). Richards, Manfredo, and
Sanders (2004} demonstrate how this
method can be used to estimate a similar
type of process in an application to
derivatives based on temperature indices
(weather derivatives).
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Pricing Insect Derivatives

An insect derivative is a contingent
security based on the value of an
underlying insect population index. If the
derivative is specifically an option, then it
will have a positive intrinsic value if the
actual realized population is higher than
the agreed strike level for a call option, or,
conversely, lower for a put option. By
buying an insect call option, a grower may
be able to effectively protect himself or
herself from financial loss should an insect
population rise above the strike level.

There are five essential elements that form
any insect derivative: (a) the underlying
insect population index; (b} the length of
time of the contract prior to expiration;
(c) the location for where the underlying
insect population is reported {(e.g., farm,
orchard, experiment station, or larger
aggregation of farms); {d} the dollar value
attached to each unit of the underlying
index {marginal loss in revenue
atiributable to an additional insect}; and
(e} the strike population index value.

At the agreed expiration date of the option,
a holder of a call option will receive
payment if the inseect population index is
greater than the strike price, and the
holder of a put option will receive payment
if the insect population index is less than
the strike price. The amount of payment is
equal to the level of insect population that
is greater (less) than the strike price
multiplied by some notional dollar value
per unit of the underlying insect
population index. In the case where the
option is not exercised, the option buyer
will forfeit his or her option premium.
Sellers of options, or option writers, receive
a premium for providing this option to the
option buyer.

As explained in the introduction, the
proper pricing of such an instrument is
critical for its successful trade. Indeed, if
these derivatives are mispriced in the
marketplace, traders will not be attracted
to the contract, leading to liquidity
problems. In addition, large bid-ask
spreads in the absence of a commonly

agreed pricing model could also hamper
market liquidity. While insect derivatives
are likzely to be traded only over the
counter, it is still critical that appropriate
pricing models be used.

There are essentially three ways to price
insect derivatives. First, “burn rate”

or actuarial models use historical
probabilities to form estimates of expected
payout values at some time in the future.
Discounting the expected payout to the
present represents an “actuarially fair”
derivative price. Although simple to use,
burn rate models do not take into account
the complex nature of insect growth
processes, nor is there any way to updaie
population estimates as the season
progresses. Consequently, derivatives
priced this way will trade infrequently, if
at all (Dischel, 1998; Pirrong and
Jermakyan, 1999; Zeng, 2000).

Second, if insects could be hedged, then it
would be possible to price insect options
using a traditional, no-arbitrage, Black-
Scholes pricing model (Black, 1976).
However, as in the case of weather
derivatives (Richards, Manfredo, and
Sanders, 2004}, insect populations are
not tradable assets. Without an effective
hedge, we must consider the role of the
market price of risk and devise a way of
estimating ifs impact on derivative prices,

A third method for pricing insect
derivatives provides a more viable
alternative, Fortunately, because insect
populations are not likely to be correlated
with the market portfolio, we can use the
risl-neutral valuation model of Cox,
Ingersoll, and Ross (1285) and proceed by
following a three-stage algorithm.'® First,
we "risk neutralize” the insect population

®Turvey {2005) uses a similar argument to price
degree-day weather derivatives. Yet, in the case of
weather, it Is less obvious that weather is uncorrelated
with the market portfolio. Can and Wel (1999) provide
evidence to the contrary, as do Richards, Manfredo,
and Sanders (2004). Turvey contends, however, that
this finding is immateral if traders are able to diversify
weather risk across several local markets, If this is the
case, then the “weather beta® will be zere and a risk-
neutral approach can be used.,
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process by estimating the process defined
in (5} and removing all dynamics that are
explainable by changes in the mean, by
mean reversion, or by jump processes.
The remaining random variation is then a
martingale Q, and dz becomes dv, where
v, is a @-Weiner process [Alaton, Djehiche,
and Stillberger, 2002). Second, we form
an expectation of the infrinsic value of
the derivative under the @-measure
defined by our risk-neutralized process.
Third, the expected payoff value is
discounted back to the current date at the
risk-free rate. This discounied expected
payoff is the market equilibrium price of
the derivative.'!

More formally, given a constant market
price of risk, a constant rate of interest r,
and assuming each contract pays one
dollar per unit of insect population, the
martingale that defines the underlying
index becomes:

m

(7) d.Bt=(d§; +¢(B™-B™) - Ad

(&~ 1[;)0) dt + odv + §dgq,

where duv is now a @-Wiener process
{Alaton, Djehiche, and Stillberger, 2002},
and { is the market price of risk. As
argued by Hull (2005), however, if the
underlying is indeed statistically
independent of the market portfolio, then
the market price of risk is zero. Because
this is lkely to be the case for localized
insect populations, we set § = 0 in (7) and
proceed to price the derivative using the
risk-free discount rate.

To demonstrate the third step of the
pricing algorithm, we consider the specific

! Although risk-neutral valuation is typically
applied in cases where the underlying is lognormally
distributed, it {s only required that the adjusted
probability distribution under which the expectation
is taken be the one which is consistent with the
underlying following a martingale {zero drift stochastic
process) (Harrison and Kreps, 1979). For a recent
application of this approach, and a review of whether
or not the martingale restriction holds in practice, ses
Turvey and Komar (2008).

case of a call option. The expected payoff
to a call option is given by:

Cr= max[BT -X, 0].

where X is the strike population value.
This expectation must be found under the
Q-measure. Taking the expectation and
discounting to the present from T at the
rate r gives a call-option value of:

(8] V; = e—rtT«tJ

On

x| (1, - X)®(B,) + e 'n

r

2n

where |, and o, are the mean and
variance, respectively, of the insect
process, and P is the standard normal
distribistion function.*?

The expectation in (8) is found numerically
using a Monte Carlo simulation with 100
random draws of the continuous diffusion
process and 100 independent draws of
the discrete Poisson jump process (for a
total of 10,000 random combinations}.
Multiplying the expected insect population
value that lies below the strike population
value by a notional $1 “tick rate” and
finding the present value yields an
estimate of the value of a hypothetical call
option. The value of a put option, or any
other derivative-where the payoff can be
similarly defined, can be found the same
way. With these prices, therefore, traders
in the market can be fully confident that
the price reflects full economic value to
both buyers and sellers—or, in insurance
terminology, that they are equivalent to an
“actuarially sound” premium.

Simulating Risk Mitigation with
Insect Derivatives

When pricing derivatives on “physical”
quantities likke insect populations or the
weather, derivative prices depend only on:

The mean and variance found under the
g-measure include the market price of risk and jump
terms, but their specific forms are not material heve.
‘They have heen derived, however, and are avallable
from the authors upon request.
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forecasts of the underlying variable and
interest rates, but their economic value to
any particular grower depends on a
nuintber of other variables. Specifically,
economic value is defined in terms of the
utility created for a representative grower
by the opportunity to use insect derivatives
to reduce the variability of net income.

Utility rises in the level of net income, but
at a declining rate (declining marginal
utility of income). The rate at which
marginal utility declines as net income
increases is determined by the degree of
risk aversion of the representative grower,
y.'* Higher values of y suggest a more
rapid rate of diminishing marginal utility of
income, and hence a greater degree of risk
aversion.

Formally, define a power utility function
where Uy(n) represents the utility of a
representative grower g from earning an
uncertain level of profit n,, and vy is the
coefflcient of risk aversion such that:

1-
*n:g‘"
1-v

where 0 < y < 1 for concavity and E[-] is
the expectation operator. Power utility is
an attractive alternative because it is a
simple representation that possesses all
the characteristics required of a well-
behaved utility function: it is concave by
consiruction, it implies a constant relative
risk-aversion level {y } and in profit
provided 0 <y < 1, and decreasing
absolute risk aversion as wealth rises. If
Y = 0, then the grower is “risk neutral,” or
indifferent to the volatility of his or her
income stream.

@ E[U,m)]=E

Most importantly, by using an expected
utility frameworls, we are able to estimate

1 Parameterizing the degree of risk aversion in the
stmulation model is not Inconsistent with the risk-
neutral derlvative pricing model because risk neutralty
in the Iatter case refers to the equilibrium market
outcome, not an individual trader’s attitude toward
risk. In the simulation model, we assume that a
representative grower need not have preferences
identical to any other.

the risk premium placed by a representative
grower on the threat of yield loss due to
insect damage {or higher cost of insect
control}. Deflne a grower's certainty
equivalent {CE} value as the dollar amount
he or she would accept with certainty in
lieu of the risky prospect of receiving an
uncertain amount of net income with
expectation Eir,]. In a power utility
frameworlk, a grower’s CE value is found
by solving (9) for n,. The risk premium
grower g is willing to pay, therefore,
becomes:

{10) R(n,) = E[n,] - CEln,)
=Eln,] - ((1 - y)E[U,))Y*,

for an uncertain level of net income. For
the B. tabacl example, net income from
growing cotton is assumed to be equal to
the difference between cotton revenue and
total production cost, where revenue is
the product of uncertain yields ( Y,) and
prices (p):

(11} x, = py, ~ Kley),

and total production cost depends on the

level of insect control activities, ¢,. To

capture the likely diminishing marginat

returns to insect control activities, yield in

year tis assumed to be a simple Cobb-
Douglas (log-log) function of insect density,
control activities, and a binary variable to
account for year-specific population
differences:

(12) h'l(yg,g} = Bo + Bim{Bg.t} + Bzhﬁcgnt]-
+Ps D94 + ey 4,

where D94 is a binary variable for the
year 1994 (D94 = 1 if the year is 1994,
and is zero otherwise): £, is a grower-
specifie i.1.d. random error vector; and
the remaining variables are as defined
ahove.

Because we do not have data on other
inputs, the yield function in (12) assumes
all growers use best-practice technology so
that B, represents their average yield,
conditional on optimal input application.
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Further, insect control, and hence
populations, are assumed to be
endogenous. Therefore, equation {12) is
estimated using an instrumental
variables procedure (two-stage least
squares) where the set of instruments
includes all exogenous and
predetermined variables in the system.
Because a least-squares procedure is
used to estimate (12}, we implicitly
assume the error term (g, ) is normally
distributed. Consequently, the stochastic
profit simulation model is driven by a
Gaussian error process for yields, the
parameters of which are determined from
the estimation results.

The stochastic expected utility framework
is then used to define three measures of
the risk-return tradeoff generated by
various risk management strategies: (a) a
Sharpe ratio, (b) a 5% Value-at-Risk (VaR}
measure, and (c) a certainty equivalent
value.

The Sharpe ratio is a measure of return
per unit of risk derived from an expected
utility-maximization framework (Gloy and
Baker, 2001). Specifically, it is defined as
the ratio of excess returns to an asset to
the coefficient of variation of its returns,
where "excess returns” are defined relative
to the risk-free rate of return. Formally,
the Sharpe ratio is written as:

R -R
1 =9 ¥
(13) SR, S BRI

where R, is the return to the asset or
venture in question, R,is the risk-free rate
of return, s, is the coefficient of variation
of returns, and E[R,] is the mean return. !4

Value-at-Risk (VaR) measures the
maximum amount a firm can expect to
lose at a certain confidence level for a
certain period of time. For example, ifa

"The Anancial return to a venture is defined as the
ratio of net income, or profit, to the total arnount of
Investment. We assume 100% equity financing
throughout in order to abstract from decislons
regarding the capital structure of the flrmi, which may
introduce financial risk.

grower's VaR is -$200 per acre at 5% on
an annual basis, this means there is a 5%
chance he or she will lose at least $200
during the year. VaR provides a very
infuitive notion of the monetary equivalent
of the risk facing a firm as it immediately
converts a notion of spread or dispersion
into a dollar-equivalent figure (Jorion,
1997).

Finally, the CE value defined in equation
{10) is cornpared for alternative insect-risk
management strategies. From a grower's
perspective, a higher CE value is preferred
because it implies a lower “cost of risk” or
risk premium that a rational investor
would demand.

By comparing each of these three
measures between hypothetical scenarios
wherein growers do or do not use insect
derivatives, it can be determined whether
bug options represent potentially valuable
risk management tools.

A number of assumptions are made in
order to implement the insect-derivative
simulationt model. First, the number of
contracts used to hedge insect-yield risk
from a typical acre of cotton in California’s
Imperial Valley (the “hedge ratio”) is 1.89
{Cecchetti, Cumby, and Figlewski, 1988},
The hedge ratio is determined by
eslimating a simple linear regression of
yield on insect densities. The slope
parameter in this regression shows the
marginal impact of a one-adult-insect-
per-leaf rise in population, so multiplying
the marginal impact of one insect by the
price of cotton provides an estimate of
the marginal revenue-loss, or the hedge
ratio.

Second, the insect process is assumed to
be a linear function of contrel activities
and other random factors:

Bg.t =gt B Co et By

where g, is an 1L.1.d. normal error term.
Again, given that c,, is an endogenous
variable, we use an instrumental
variables technique in order to remove
any simultaneous-equations bias.



Agricultural Finarice Review, Spring 2006

Richards etal. 37

Third, to determine the independent effect
of random insect growth on yields, the
simulation is conducted with insect control
activities held at their mean. While
understanding the role of biological and
chemical insect suppression is an
important pursuit, the point of this
research is to show how financial risk can
be mitigated independent of traditional
control methods.

Fourth, although cotton prices represent
another source of economic risk in reality,
prices are fixed at their long-term
average-—again in order to focus attention
on the role of insect derivatives as a means
of managing volumetric risk that arises
from infestation.

Finally, the coefficient of relative risk
aversion (y) is allowed to vary from 0.1
(near-risk neutrality} to 0.9 {extreme risk
-aversion) to convey the importance of
attitudes toward risk in determining the
value of insect derivatives in terms of
the expected-utility framework. The
net income/expected utility model is
simulated using Monte Carlo methods
with @Risk stochastic stimulation
software (Palisade Corporation, 2005).

Results and Discussion

Recall, the objective of this study is to
design an insect derivative and to develop
and implement a model that can be used
to arrive at a market value for any
variation of the instrument we create.
Because this objective involves several
steps, our discussion of the results
considers each in turn: (a) estimates of
the deterministic insect population
function; (b) estimates of the stochastic
process that drives variation from the
mean; (c) estimates of insect derivative
price, herein defined as a call option on
B. tabaci at the Brawley, California, site;
(d) estimates of the impact of B. tabaci on
cotton yields; and (e} simulation results
regarding the feasibility of insect
derivatives as risk management tools for
insect-caused yield damage.

Table 2. Insect Population Mean Function
Estimates (MLE}, Bemisia tabaci Trial
Data: Brawley, CA {1993-1994)

Parameter Estimate t-Ratio
Ko 1008 18.639* 6.454
Ko 1000 21.811 0.529
o 0.126* 11.633
gu 2.277* 3.017
g 5.417* 4.230
g -0.086 -1.714
oz -0.271* -3.226
1994 30.792* 7.292

Log-Likelihood Function = -1,375.011
¥? Statistic = 1,694.820

Notes: A single asterisk (*) denoles statistical
significance at the 5% level. The parameters are
defined as follows: K, is the carrying capacity of the
environment in year t; « is the rate of growth; g, is
the linear (m= 1) or quadratic (m= 2} control
parameler in 1993 {n=1) or 1994 {(n=2); and 1984 is
the regression coelficient of the binary variable for the
trials conducted in 1994 (1994 = 1 if the year is 1994,
and O otherwise). The x* statistic compares the
estimated log-likellhood functien model to a null
alternative and has a critical value of 15.51 with eight
degrees of freedom at a 5% level of significance.

Table 2 presents estimates of the
deterministic part of the insect growth
model. In this model, carTying capacity is
allowed to vary from one year to the next
because we cannot otherwise control for
the temperature, the amount of
vegetation, or other factors that may
influence the maximum supportable
population. However, the results in
Table 2 show that the maximum
supportable population i 1993 was
19.639 Insects per cm?, but the maximum
population in 1994 does not differ
significantly.

The rate of growth was also initially
allowed to differ between the two years
but, perhaps due to the relatively small
number of time-series observations
available for each plot, the estimation
procedure could not identify two
separate growth rates. Therefore, we
maintain an assumption throughout
that the rate of population growth in both
years averages approximately 12.6% per
week.,
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Table 3. Insect Stochastic Process Model Estimates (MLE), Bemisia tabaci Trial Data:

Brawley, CA (1993-1994)

MODEL #1 MODEL #2 MODEL #3
BM with Mean Reversion BM-MR with Jumps
Brownian Motion (BM) (BM-MR) (BM-MR-J)

Parameter Estimate ¢Ratio Parameter Estimate #-Ratio

Parameter Estimate ¢-Ratio

a, 255.882* 12.991 Oy
B 1.182 1.359 M
Kg

141.762*  13.163 0y 96.161* 11.746
1.704 Mo 1.032*  3.961

0.728* 16445 Xq 0370  6.183
A 0.193* 6524

5y 28.143 1.511

da 43.451*  B8.455

LLF = -1,404.08

LLF = -1,305.16

LLF =-1,291.87

Notes: A single asterisk {*} denotes statistical significance at the 5% level. The parameters are defined as follows: o,1s
the standard deviation of the Weiner process i; , is the drift rate of process {; k, is the rate of mean reversiom; A, Is the
. arrival rate of the jump process; §, is the standard deviation of the jump process; and ¢, is the percentage deviation

during a jump.

Next, estimates of the control function
suggest that insecticide applications were
subject to diminishing marginal returns
each year. Nevertheless, insecticide
appears to have been significantly more
effective during 1994, where the marginal
effect (evaluated at sample means) was
1.081 fewer insects per application, versus
0.901 fewer in 1993.

Finally, for reasons of either weather,
lack of natural enemies, or some

other factor that we could not measure,
the average population in 1994 was
fully 30.8 more insects per leaf than in
1993.

After removing the deterministic mean
from the observed insect series, three
alternative stochastic processes were then
estimated in an attempt to explain the
remaining, random variation. Starting
with the simplest, most parsimonious
model, we estimated: (a) a simple
Brownian motion (BM); (b) a Brownian
motion with mean reversion (BM-MR); and
(¢) a mean-reverting Brownian motion with
discrete, Polsson-distributed jumps
(BM-MR-J].

Table 3 reports the parameters from each
model and the results from testing among
the competing models. Because each is

nested within the more complicated
alternative, likelihood ratio (LR) tests
suffice for model selection.

For the first comparison (BM versus
BM-MR)}, the resulting LR statistic is 2
distributed with one degree of freedom. At
a 5% level, the critical ¥ value is 3.84,
while the test statistic value is 197.84.
Thus, we clearly reject the BM model in
favor of the BM-MR.

Second, the' LR test statistic used to
compare the BM-MR and BM-MR-J models
has a critical value of 7.82, while the
estimated LR x® value is 26.58, again
suggesting rejection of the more
parsimonious model.

Based on these results, we therefore
expect a drift rate away from the
underlying trend of approximately one
insect per leaf per week. Deviations
from trend tend to return to the mean at
a rate of 37% per week. Further, we
expect to observe jumps in insect
numbers of 43.45 insects per week
approximately 20% of the time. Clearly,
jumps this large and frequent are a
dominant characteristic of the process
driving B. tabaci growth, and so willbe a
major factor in pricing any derivative * -
written for thermn.



Agricultural Finance Review, Spring 2006

Richards etal. 39

Table 4. Insect Derivative Price Estimates
Based on Bemisia tabaci Trial Data:
Brawley, CA (1993-1994)

Call Option Standard

Strike Value, V, Deviation
Population (s) (%
20 46.37 7.44
25 41.44 7.91
30 36.99 7.65
35 31.73 7.54
40 24,94 7.99

Notes: Sample average population is 30.63 adults per
leaf, so the first two call options are “in the money,”
while the third is “at the money,” and the final two
optons are “out of the money” as the grower is better
off with the expected number of insects than with
that proposed in the hypothetical options with strike
populations of 35 or 40 adults per leaf. Prices are
obtained using the risk-neutral valuation method
evaluated at the fixed parameter values given in
Table 1. Monte Carlo simulations involve 10,000
draws from distribution of the random element in the
insect population growth process.

Because the BM-MR-J model was found

to dominate the others, we use this model
to form expectations of the B, tabaci
population value at contract expiry, as
required by the pricing model in (8).

Table 4 provides a summary of the price
estimates for a range of strike population
levels (20 adulis per leaf to 40 adults per
leaf) as well as their standard deviations.®

Conducting a sensitivity analysis of call
option prices is necessary because the
strike price is a significant element of the
option contract that is subject to
negotiation between both parties. Given
that the average population value over the
sample period is roughly 30 adults per
leaf, options with strike populations above
this value are termed “in the money”
because they have a positive intrinsic
value. In contrast, options with strike
populations below 30 are “out of the
money” because they have no intrinsic
value to a potential purchaser. Further,

' Steike population levels are chosen so that the
mean density is approximately in the middle of the
upper and lower values. The early 1990s represented
a peak-infestation perlod for B. tabaci in this area;
thus, these values are not intended to be
representative of current conditions.

the higher the strike price, the less
financial insurance insect options provide
their holder. As a result, we expect lower
option values the higher the sirike price.

The results in Table 4 show this to be the
case. Specifically, if a grower expects
significant economic damage if insect counts
rise above 20 adults per leaf, then buying
a call option for protection at any realized
population above this level will cost $46.37,
Because this price is fully justifiable on
economic grounds, both the grower and
counterparty (e.g., an insecticide company}
will agree to this price and will enter the
option contract willingly.

Given the equilibriuum derivative prices in
Table 4, we next examine whether a risk
management program that incorporates
insect derivatives is able to mitigate yield
risk caused by insect infestation.
According to equation (12}, higher insect
numbers reduce yields in a linear-
quadratic manner, while chemical conirol
activities affect insect numbers, and hence
yield, in a similar fashion. Although this
process is naturally recursive, because
control activities do not affect yield directly
but by reducing insect numbers,
eslimating with an instrumental variables
procedure ensures that the parameter
estimates are consistent. In this way, we
control for the endogeneity of insect
density and pérmit a direct estimate of the
economic value of insect control.”® The
yield equation forms the core of a
stochastic profit-simulation model in
which growers are able to offset insect-
borne insect damage (i.e., lower yields) by
purchasing insect call options from an
anonymous third-party market-maker.'”

% In observed economic data, control activities
would also be endogenous. However, in a controlled
experiment, chemiecal applications are predetermined
and thus not correlated with the error In each equation.

¥ Commonly, derivative instruments that are not
offered over a formal exchange are traded “over the
counter” or between two parties in a privately
negotiated transaction. A financial institution or
trading firm {Bank of America is an example of the
former, and Aquila Energy the latter) usually sells or
“writes” the option for a party with a legitimate hedging
interest taking the other side. Chemical companies
may also sell options either directly to growers, or ’
through financial market-makers.
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Instead of offsetting the economic damage
caused by insect infestation through
derivative securities, clearly growers can
also mitigate yield damage more directly
through the use of chemical or biological
treatment procedures. In the B. tabaci
sample data, the intensity of insect control
is measured by the number of applications
of a fixed chemical regime throughout the
growing season. However, allowing for
chemical treatment means that growers
can potentially manipulate the price of any
derivative written on observed population
counts. Therefore, to focus attention on
the role and value of derivatives in the
absence of such manipulation, we
construct yield forecasts on the assumption
that growers apply the sample-average
number of treatments.'® This assumption
is analogous to requiring growers who
purchase multiple-peril crop insurance
contracts to follow certain planting,
growing, and harvesting restrictions in
order to minimize the moral hazard
problem.*?

The yield model results are reported in
Table 5. Based on sample average
population values, the marginal effect of
an additional adult B. tabaci throughout
the growing season Is a loss of 4.656
kg/ha. Using the long-term average price
for cotton of $1.32/kg, this implies that
each additional adult costs cotton growers
approximately $6.03 per ha. As also
observed from this table, growers can
reduce the damage from any given
population level by spraying insecticide,
but their ability to do so is subject to
sharply diminishing marginal returns.

In order to implement the stochastic profit
simulation model, it is also necessary to

!®The number of treatments in the experimental
data used here was not based on percefved need, but
rather based on experimental protocol, Although
actual treatment values will likely vary from those
reported here, the estimated parameters are
nonetheless estimated without bias.

" Moral hazard refers to the tendency of insured
growers to reduce their efforts to avoid yield losses. By
including “best practice” restrictions in derivative
contracts, the counterparties are essentially reducing
growers' ability to use Insect derivatives to substitute
for chemical control {as described earlier in footnote 3}

Table 5. Cotton Yield Model (25L5), Bemisia
tabaci Field Trial: Brawley, CA (1993-1994)

Parameter Estimate t-Ratio
Constant 7.066* 32.129
In(B) -0.084* -2.891
In(c,) 0.166* 4,036
1994 0.292 1.341
RZ=(Q.747

Notes: A single asterisk [*) denotes statistical
significance at the 5% level. Dependent variable =
In{Yield); independent variables are B = insect
population, and ¢ = level of control activities (number
of applications). Instruments consist of all exogenous
and predetermined variables in the system.

estirpate the parameters of the Gaussian
yield-error process. As required by the
least-squares estimation procedure, the
error process is indeed normally
distributed with a mean of zero.

However, yield-risk in Imperial Valley
cotton is significant, as the standard
deviation is 138.7 pounds of cotton.

This yield model, and the estimated error
distribution, are then used as the primary
inputs to the stochastic profit simulation
model.

Table 6 shows the “base case” risk-return
measures, under which no risk
management activities are used, as well as
those calculated under a simple risk
management strategy. Although a wide
range of derivatives can be defined, as well
as strategies for trading them, we focus on
an insect-derivative hedge in which the
grower buys a call option with a strike’
population level equal to the average insect
population value in the Brawley sample
data set. As would be expected, if the
options are fairly priced, net income does
not differ between the hedge and no-hedge
strategies in the simulation exercise
(1,000 draws from the insect model error
distribution).

The results reported in Table 6 show that
the insect derivative provides a clear
improvement in all risk and risk-return
measures. Specifically, the Sharpe ratio
under the hedge strategy is 0.15 points”
higher than in the urthedged scenario.
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Table 6. Risk Management with Insect
Perivatives Stochastic Simulation Results:
Representative Cotton Farm, Imperial
Valley, CA. (2004)

Risk Management Strategy

No Hedge Call Option

Risk Metric {$/acxe) Hedge ($/acre)
Net Income $165.54 $165.54
Sharpe Ratio 1.99 2.14
VaR (5%} $30.33 $5117.95
Certainty Equivalent:

¥=0.1 $163.72 $164.32

¥=05 $153.18 $160.01

¥y=0.9 $128.07 $156.46
Risk Premium:

y=0.1 $1.82 $1.23

¥y =05 $12.37 $5.54

v=09 $37.47 $9.08

Notes: Simulation resulis are from 1,000 random
draws from normal insect population model error
distribution with mean’'zero and standard deviation of
(.85 adults per leaf. Sharpe Ratio {s defined as the
excess returns (expressed as a percentage of invested
capital} over the risk-free vate divided by the
coefficlent of variation of returns. VaR is the “value at
risk” and is Interpreted as the maximum loss
expected with a 5% probability. Certainty equivalent
and risk premium values are calculated from the
power utility funetion with a coefficlent of relative rsk
aversion of y, where y = 0.1 indicates near-risk
neutrality, ¥ = 0.5 is moderate risk aversion, and

¥ = 0.9 is strong risk aversion. All simulation data
are taken from University of California Cooperative
Extension (2005).

Therefore, purchasing an at-the-money
cail option provides a favorable risk-return
{radeoff relative to relying on chemical or
biolegical control methods alone.

Subtracting the 5% VaR from expected net
income provides a measure of how much a
grower can expect to “lose” relative to a
normal year 5% of the time, or one year in
20. Because low ylelds are driven entirely
by insect damage in this model, this “worst
case” scenario means a year with a
particuiarly high number of insects. With
no options hedge, a grower can expect to
lose $135.21 (= $165.54 - $30.33) 5% of
the time relative to average net income,
With a call-options hedge, however, the
expected loss falls to $47.59 (= $165.54 -
$117.95)} because the insect option

effectively truncates the revenue
distribution below the point at which
insect damage would otherwise cause
significant yield losses.

Unlike the previous measures, a grower's
certainty equivalent (CE) value depends
upon his or her attitude toward risk, here
summarized by the coefficient of relative
risk aversion. Higher values of ¥ mean the
grower is more risk averse, and so is
willing to pay less for a risky prospect. At
values of v near risk neutrality (y = 0.1},
the difference in CE values between the
hedged and unhedged scenarios is small.
However, as the degree of risk aversion
rises toward 0.9, the difference in CE
values rises as our representative grower
attaches a greater value to the stability of
net income, relative to the magnitude.

Finally, the difference between net income
and CE for each level of risk aversion gives
the risk premium—or the amount a grower
would willingly pay for insurance sufficient
to remove any remaining net income risk.
According to these simulation results,
trading insect call options removes a
significant part of the risk premium
associated with growing cotton. Whereas
a risk-averse grower who does not buy a
call option can be expected to pay a
$37.47 premium to transfer all yleld risk,
call option buyers are expected to pay an
average of only $9.08. Based on these
aggregate results, therefore, it is clear

that insect derivatives can be effective in
mitigating the economic risk caused by
insect infestation. ’

Conclusions and Implications

Findings from this analysis reveal it is
possible to design a financial instrument
that allows growers to transfer the
financial risk of insect damage to their
crop. Further, because data on insect
populations are readily available through
rigorous scientific experimentation for
marty systems, it is possible to value
derivative contracts written for a specific
crop and locationn. Indeed, because insect
numbers are independent of financial
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markets or other measures of broader
economic performance, it is possible to use
relatively simple risk-neutral valuation
methods to price a wide range of insect
derivatives.

As shown by this study, insect derivatives,
designed according to the principles
outlined here, can be effective risk
management tools. Although derivatives
must be purchased from a counterparty
who is willing to assume the risk that is
transferred, the cost is generally more
than offset by the higher utility derived
from a less volatile income stream. This is
found to be the case for a particular type
of derivative—a call option on the
underlying insect population—but it
remains to be demonstrated for other
types of derivatives and for other insect
populations.

Further work in this area is required in
order to develop a better understanding of
the practical aspects associated with
creating and trading insect derivatives.

# First, although we have shown it is
possible to design and price an insect
derivative, future research in this area
should investigate issues of basis risk—
or how an individual grower's exposure
differs from that measured at an
experiment station or other monitoring
point—and how this can impact the
grower's risk management strategy with
insect derivatives. In particular, the
valuation methed considered here
addresses issues of spatial population
variation only in an implicit way, namely
by estimating the population process at
a specific place. However, future
research should work to incorporate
stochastic processes in the spatial
dimension as well. By explicitly linking
pepulation growth rates at varying
distances, and with varying degrees of
contiguity relative to one another, we
will be able to price variation in both
dimensions. This research represents
an advance in both economic
entomology and derivative pricing more
generally, as it offers a means of
explicitly pricing spatial basis risk.

Another method of addressing basis risk
is to use an algorithm based on the
concept of forecast encompassing. With
this approach, traders create optimal
cross-hedges in the presence of spatial
basis risk using contracts written on
different insect monitoring stations,
where optimality is defined in terms of
the weight placed on contracts written
at different locations. This method was
developed by Sanders and Manfredo
(2004) for determining the relative
weights to place on different futures
contracts in a composite hedge. By
taking optimal positions in several
different insect trap locations, traders
will be able to create a portfolio that best
mimics the risk at their particular
location. While not likely to eliminate all
basis risk, forecast encompassing offers
an econometric-based means of creating
effective hedge positions for traders.

Second, while insect populations under
the controlled conditions of the data
used in this study do not appear to
change with respect to heat or
precipitation (see footnote 5}, other
insect and invasive species, including
plants, nematodes, fungi, and locusts,
do respond to specific weather
conditions. Thtus, in addition to the
“bug optlons” presented here, there are
a host of other possibilities, including a
variety of weather derivatives, which
could be used fo offset economic losses
to crops caused by insects.

Third, more research should be
conducted using other insect species to
determine whether the growth processes
estimated in this analysis are typical of
insects in general, or if B. tabaci
represent somewhat of an anomaly.
This consideration is particularly
important given that the densities of

B. tabact during the experimentation
period used here were lilely much
higher than those experienced currently.

Fourth, before insect derivatives become
widespread, there is still much work to
be done in designing institutions and’
markets that can facilitate their trade.
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While weather derivatives are still in
their infancy, interest from energy firms
and cthers in the trading industry has
led to the development of a significant
pool of interest in their trade. Building
similar interest is necessary to bring
insect derivatives from theoretical
possibility to a tradable reality.
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Appendix: Solution to Exponential
Growth Equation

To solve the differential equation in (1) of
the main text, use the separation-of-
variables principle to rewrite as:

dB__ %

@Ay —%2 -
B(K-B) K

after simplifying notation for the mean bug
process. Next, rewrite this expression as:

B K-B

]dB=ocidt,

and integrate both sides to obtain:

(A3) m(mm‘?——)mlnm[ Bo ]
K-B K- B,

Next, solving for B gives:

K

{Ad) B-= .
1 +de™!

where d = (K- By)/B,. In the text, the
control function g is assumed fo be
exogenous to the natural growth process
described by the differential equation in
(1), as given by (Al] above.



