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Powdery mildew (caused by Podos-
phaera macularis) of hop (Humulus lupu-
lus) is an economically important disease 
in the Pacific Northwest, where nearly all 
U.S. commercial production of hop occurs 
(1). The pathogen may infect all above-

ground plant parts and crown buds (10), 
although crop losses result from reductions 
in cone yield and quality due to infection 
of female flowers (burrs) and developing 
cones (18). Such infections can result in 
burr or cone abortion, severe browning, 
and distortion of cones when infection 
occurs early. Infection after cone elonga-
tion results in a condition referred to as 
“cone early maturity” (3,6). Diffuse infec-
tions, often not visible to the unaided eye, 
cause infected cones to ripen faster than 
healthy cones and often result in growers 
harvesting overripe hops. Overripe hops 
are prone to shattering or crumbling during 
picking and cleaning, which reduces yield. 
Overripe hops may become brown in color 
during drying operations and impart an 
earthy aroma to beer (3,6). Complete crop 
losses can result from cone early maturity 
in aroma cultivars due to buyer rejection of 
the crop and absence of alternative markets 
for diseased cones. In 2001 and 2002 in 

Oregon, 50% of the contracted crop of the 
aroma cv. Willamette was rejected because 
of cone early maturity, resulting in $5 mil-
lion in losses (16). Observations in Oregon 
and Washington hop yards from 2001 to 
2004 indicate that a 2- to 5-day delay in 
the harvest of infected cones can result in 
unacceptable quality of aroma hops, with 
subsequent rejection by the contracting 
brewer or marketing company (W. F. 
Mahaffee, unpublished). 

Knowledge of powdery mildew inci-
dence on hop cones could be used by 
growers to schedule harvest dates in order 
to minimize losses due to cone early ma-
turity. Current sampling protocols for es-
timating powdery mildew incidence on 
cones are impractical to implement on a 
large scale, because a 1,500-cone sample 
from a yard takes approximately 5 to 7 h to 
collect and assess (D. H. Gent and W. F. 
Mahaffee, unpublished). Furthermore, this 
sample size may not be sufficient to esti-
mate disease incidence in large yards be-
cause of spatial aggregation of the disease 
(4). Gent et al. (4) generated fixed sam-
pling curves to aid in assessing disease 
incidence of cones in order to reduce sam-
pling costs. However, the use of fixed 
sampling curves requires a reasonable 
initial estimate of disease in order to obtain 
a precise estimate of disease without over-
sampling (15). The development of se-
quential sampling curves for estimating or 
classifying the incidence of disease above 
or below some threshold value could re-
duce sampling time and expense (2). Rapid 
assessment of the disease status of cones 
also may facilitate efforts to derive eco-
nomic action thresholds for management 
of the foliar phase of powdery mildew on 
hop, and guide decisions about harvest 
dates for yards because the incidence of 
powdery mildew on foliage and cones is 
positively correlated (23). 

The objective of this research was to de-
velop and evaluate sequential sampling 
models for estimating and classifying the 
incidence of powdery mildew on hop 
cones. Parameters of the binary power law 
(8,12,13) derived from spatial pattern 
analysis of the incidence of hop powdery 
mildew on cones (4) were used to develop 
the sampling models. This work comple-
ments the sequential sampling models 
developed for the leaf phase of hop pow-
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Sequential sampling models for estimation and classification of the incidence of powdery mil-
dew (caused by Podosphaera macularis) on hop (Humulus lupulus) cones were developed using 
parameter estimates of the binary power law derived from the analysis of 221 transect data sets
(model construction data set) collected from 41 hop yards sampled in Oregon and Washington
from 2000 to 2005. Stop lines, models that determine when sufficient information has been col-
lected to estimate mean disease incidence and stop sampling, for sequential estimation were
validated by bootstrap simulation using a subset of 21 model construction data sets and simu-
lated sampling of an additional 13 model construction data sets. Achieved coefficient of varia-
tion (C) approached the prespecified C as the estimated disease incidence, p̂ , increased, al-
though achieving a C of 0.1 was not possible for data sets in which p̂ < 0.03 with the number of 
sampling units evaluated in this study. The 95% confidence interval of the median difference
between p̂  of each yard (achieved by sequential sampling) and the true p of the original data set 
included 0 for all 21 data sets evaluated at levels of C of 0.1 and 0.2. For sequential classifica-
tion, operating characteristic (OC) and average sample number (ASN) curves of the sequential
sampling plans obtained by bootstrap analysis and simulated sampling were similar to the OC
and ASN values determined by Monte Carlo simulation. Correct decisions of whether disease
incidence was above or below prespecified thresholds (pt) were made for 84.6 or 100% of the 
data sets during simulated sampling when stop lines were determined assuming a binomial or 
beta-binomial distribution of disease incidence, respectively. However, the higher proportion of
correct decisions obtained by assuming a beta-binomial distribution of disease incidence re-
quired, on average, sampling 3.9 more plants per sampling round to classify disease incidence
compared with the binomial distribution. Use of these sequential sampling plans may aid grow-
ers in deciding the order in which to harvest hop yards to minimize the risk of a condition called
“cone early maturity” caused by late-season infection of cones by P. macularis. Also, sequential 
sampling could aid in research efforts, such as efficacy trials, where many hop cones are as-
sessed to determine disease incidence. 
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dery mildew in part I of this article series 
(5). 

MATERIALS AND METHODS 
Data. The incidence of hop cones with 

powdery mildew was assessed from 221 
transect data sets sampled from 41 com-
mercial hop yards in Oregon and Washing-
ton from 2000 to 2005 (4) using a cluster 
sampling strategy (9). In each yard, cones 
were collected from lateral branches of an 
individual plant at heights of approxi-
mately 2.7, 3.7, and 5.5 m above the 
ground and bulked. A subset of 25 cones 
(n) was selected arbitrarily from each plant 
and assessed for powdery mildew. An indi-
vidual data set consisted of disease inci-
dence of 25 cones taken from each of the 
first 60 plants (N) along the transect, for a 
total of 1,500 cones per yard. Data from all 
transects where disease incidence, p̂ , was 

> 0 were considered a model construction 
data set to generate sequential sampling 
models. A subset of 21 transects from the 
model construction data set where p̂  > 0 
(201 data sets) was selected to develop 
data sets used for bootstrap simulations, 
described below. These data sets were 
selected because they encompassed the 
range of p̂  and heterogeneity, θ̂ , ob-
served among the model construction data 
sets collected from 2000 to 2005. For the 
model construction data in which p̂  > 0, 
data sets were classified into seven disease 
incidence categories: 0.01 < p̂  < 0.025, 
0.025 ≤ p̂  < 0.05, 0.05 ≤ p̂  < 0.10, 0.10 ≤ 
p̂  < 0.20, 0.20 ≤ p̂  < 0.40, 0.40 ≤ p̂  < 

0.60, and p̂  ≥ 0.60. Three data sets were 
selected randomly from each disease inci-
dence class and represented 7 yards in 
Oregon (6 of cv. Willamette and 1 of cv. 
Sterling) and 14 yards in Washington (all 

of cvs. Columbus, Tomahawk, and Zeus, 
which are genetically indistinguishable and 
collectively referred to as CTZ). A subset 
of 13 transects that encompassed the range 
of p̂  and θ̂  observed in the model con-
struction data set were selected arbitrarily 
to validate the sequential estimation or 
classification procedures by simulated 
sampling, as described below. The simu-
lated sampling validation data sets con-
sisted of data sets collected in each year 
from 2000 to 2005, representing five yards 
in Oregon (four of cv. Willamette and one 
of cv. Glacier) and eight yards in Washing-
ton (all of cv. CTZ). The range of esti-
mated disease incidence, p̂ , in these yards 
was 0.0006 to 0.918, and the range of the 
beta-binomial heterogeneity parameter, θ̂ , 
was 0 to 0.386 (Table 1), as determined by 
the software BBD (11). 

Covariance analysis (4) on the same 
data sets indicated that the effect of hop 
cultivar and geographic location of the 
yard did not affect the slope or intercept 
parameters of the binary power law (8,12) 
in the model construction data set. The 
year of sampling, however, did affect pa-
rameter estimates, with a tendency for the 
intercept, ln(Ax), and slope, b, to increase 
with time. It is unclear whether the vari-
ability in the parameters was the result of 
natural variability about the “true” values 
of ln(Ax) and b, or if ln(Ax) and b were 
approaching their true values. The parame-
ters of a and b from Taylor’s power law 
(20) generally are regarded as robust 
across space and time, although the port-
ability of parameter estimates of the binary 
form of the power law is unclear and pa-
rameter estimates may vary over time (4). 
Therefore, the former was assumed and 
estimates of ln(Ax) = 1.81 and b = 1.22 
were obtained by pooling data over years 
for developing the sequential sampling 
models described below. 

Sequential estimation. Methods for de-
velopment of sampling curves for sequen-
tial estimation are fully described in part I 
of this article series (5) and by Turechek et 
al. (21). A summary of the methods is pre-
sented in this study. Sequential estimation 
stop lines were generated using a Mathcad 
version 13 (Mathsoft Inc., Cambridge, 
MA) worksheet (21) to solve equation 5 
presented by Gent et al. (5) for TN when N 
= 1 to 500 and C = 0.1 or 0.2, with pa-
rameter estimates of the binary power law 
obtained as described above. Evaluation of 
the sequential estimation sampling plan 
was conducted by bootstrap simulation 
using the bootstrap-simulation data set. 

Bootstrap simulation was conducted us-
ing a macro of Minitab version 14 (Mini-
tab Inc., State College, PA) as described 
previously (5,21). For a single bootstrap 
simulation, sampling units (n = 25 cones 
per plant) were sampled randomly one at a 
time with replacement from a transect, and 
the number of diseased cones (TN) was 
counted and summed. Sampling ceased 

Table 1. Disease incidence ( p̂ ), heterogeneity parameter of the beta-binomial distribution ( θ̂ ), and 
the index of dispersion (D) of data sets used for bootstrap analysis and simulated sampling evaluation
of sequential sampling models for hop powdery mildewa 

Powdery mildew data setb Measures of aggregation 

Year Location Cultivar p̂  θ̂  D 

Bootstrap-simulation      
2004 Oregon Willamette 0.01 0.27 1.65 
2001 Oregon Sterling 0.02 0.007 1.18 
2004 Oregon Willamette 0.02 0.062 2.44 
2003 Oregon Willamette 0.03 0.097 3.18 
2003 Washington CTZ 0.05 0.038 1.91 
2004 Washington CTZ 0.05 0.021 1.53 
2000 Washington CTZ 0.05 0.006 1.16 
2000 Washington CTZ 0.07 0.025 1.62 
2002 Oregon Willamette 0.07 0.027 1.66 
2004 Oregon Willamette 0.11 0.050 2.17 
2005 Washington CTZ 0.19 0.098 3.20 
2004 Oregon Willamette 0.20 0.11 3.35 
2002 Washington CTZ 0.22 0.11 3.40 
2002 Washington CTZ 0.32 0.13 3.80 
2005 Washington CTZ 0.37 0.15 4.19 
2001 Washington CTZ 0.40 0.091 3.06 
2001 Washington CTZ 0.49 0.022 1.54 
2002 Washington CTZ 0.54 0.37 7.78 
2000 Washington CTZ 0.62 0.16 4.40 
2005 Washington CTZ 0.74 0.24 5.68 
2005 Washington CTZ 0.92 0.13 3.85 

Simulated sampling validationc      
2000 Washington CTZ 0.0007 0 1.00 
2005 Oregon Willamette 0.002 0 0.97 
2002 Oregon Willamette 0.01 0.03 1.65 
2003 Oregon Willamette 0.03 0.10 3.18 
2003 Washington CTZ 0.05 0.04 1.91 
2004 Washington CTZ 0.05 0.02 1.53 
2000 Washington CTZ 0.07 0.08 2.76 
2002 Oregon Willamette 0.07 0.03 1.66 
2004 Oregon Glacier 0.11 0.05 2.17 
2005 Washington CTZ 0.19 0.10 3.20 
2001 Washington CTZ 0.44 0.09 3.06 
2002 Washington CTZ 0.55 0.39 7.78 
2005 Washington CTZ 0.92 0.13 3.85 

a The parameter θ of the beta-binomial distribution provides a measure of variation in disease inci-
dence ( p̂ ) per sampling unit, referred to as heterogeneity (12). The index of dispersion, D, is the 
ratio of the observed variance of the incidence of disease among sampling units to the expected vari-
ance under a binomial distribution (12). θ̂  and D were calculated using the software BBD (11). 

b A data set consisted of a single transect through a hop yard, where the incidence of hop powdery
mildew was determined from n = 25 cones sampled from each of the first N = 60 plants along the 
transect (4). 

c Slope and intercept parameters of the binary form of Taylor’s power law (20) for the simulated sam-
pling data sets were ln(Ax) = 0.84 and b = 1.26, respectively (R2 = 0.98), and did not vary signifi-
cantly from the model construction data set (P = 0.3132 and 0.5967, respectively). 
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when the cumulative number of diseased 
cones exceeded the model TN, or when the 
number of sampling units equaled the total 
number of sampling units in the data set 
(60 plants). A minimum of three sampling 
units was collected. The bootstrap simula-
tion was conducted 100 times for each data 
set and specified value of C. The achieved 
C and moment estimate of p were calcu-
lated for each simulation, and the results 
were summarized in box plots as described 
previously (5,21).  

The sequential estimation procedure was 
evaluated further by simulated sequential 
sampling of the 13 simulated sampling 
validation data sets using a Minitab macro 
as described previously (5,21). For a given 
data set, the data for the sampling units 
were entered into the macro in the same 
order they were collected in the field. The 
macro simulated sampling of diseased 
cones collected from the sampling units, 
and tallied the cumulative number of dis-
eased cones until the cumulative number 
of disease cones exceeded the model TN 
calculated from equation 5 in Gent al. (5), 
or all sampling units were sampled. Esti-
mates of p̂ , achieved C, and achieved N 
were calculated and related to the original 
(true) p of the data set using scatter plots 
of the difference between p and the 
achieved p̂ , C, and N. 

Sequential classification. Economic 
thresholds or economic injury levels for 
hop powdery mildew on cones have not 
been developed empirically for aroma or 
bittering cultivars. Therefore, sequential 
classification plans for powdery mildew on 
hop cones were developed at four inci-
dence thresholds (pt) for initial evaluation: 
pt = 0.05 (p0 = 0.025, p1 = 0.075); pt = 0.10 
(p0 = 0.05, p1 = 0.15); pt = 0.15 (p0 = 0.05, 
p1 = 0.25); and pt = 0.20 (p0 = 0.10, p1 = 
0.30), where p0 and p1 represent the lower 
and upper boundaries of disease incidence 
such that when the true incidence of dis-
ease, p, is ≤p0, the field is classified cor-
rectly at least 100(1 – α)% of the time; and 
when the true incidence of disease is ≥p1, 
the field is classified correctly at least 
100(1 – β)% of the time. In practice, the 
resulting classifications are interpreted as a 
test of the null hypothesis H0: p ≤ pt 
against the alternative hypothesis H1: p > 
pt, respectively. These threshold values 
were evaluated at each of four combina-
tions of α (0.05 and 0.10) and β (0.05 and 
0.10). Thus, 16 pairs of stop lines were 
developed and evaluated by visual inspec-
tion of plots of their operating characteris-
tic (OC) and average sample number 
(ASN) curves derived by Monte-Carlo 
simulations (5,21). 

Four pairs of stop lines were selected for 
further evaluation by bootstrap simulation 
and simulated sampling. The parameters of 
the selected stop lines were: pt = 0.05 (p0 = 
0.025, p1 = 0.075) and pt = 0.15 (p0 = 0.05, 
p1 = 0.25] at each of two error rates (α = β 
= 0.05 and α = β = 0.10). For a given boot-

strap simulation, sampling units (n = 25 
cones per plant) were sampled randomly 
one at a time, with replacement, from 
among all sampling units from the data set. 
Sampling ceased when the cumulative 
number of diseased cones, TN, exceeded 
either the upper or lower stop lines of the 
model, or the data set was sampled fully. A 
minimum of three sampling units was 
collected before sampling ceased to ensure 
that a representative sample was collected. 
The achieved OC and ASN then were cal-
culated (5). The bootstrap simulation was 
conducted 100 times for each data set and 
specified values of pt, p0, p1, α, and β. 

The four selected sequential classifica-
tion sampling plans were evaluated by 
simulated sampling as described above for 
sequential estimation, but with stop lines 
calculated based on binomial and beta-
binomial distributions (21, equations A1 to 
A6). The macro simulated sampling of 
diseased cones by summing the number of 
diseased cones in sequential sampling 
units, beginning with the first sampling 
unit, until the cumulative number of dis-
eased cones exceeded the upper or lower 
stop lines of the model and a decision 
could be made as to whether the incidence 
of disease was above or below pt, or the 
data set was sampled fully. To determine 
whether a correct decision was made, p 
calculated for the entire transect was as-
sumed to represent the true p. The value of 
p was compared with pt to determine the 
correct decision for that data set. The deci-
sion based on the results of simulated se-
quential classification then was compared 
with the correct decision. A type I or type 
II error was recorded if mean disease inci-
dence was incorrectly classified as greater 
or less than pt, respectively. 

RESULTS 
Spatial pattern analyses. For the model 

construction data sets, disease incidence 
( p̂ ) ranged from 0 to 0.912 (median of 
0.017) among yards. The log likelihood 
ratio test was significant for 92 (46%) data 
sets where p̂  > 0, indicating that the beta-
binomial distribution provided a better fit 
to the data than the binomial distribution 
for these data sets. The heterogeneity pa-
rameter θ̂  of the beta-binomial distribu-
tion was right-skewed and ranged from 
0.01 to 0.39, with a median of 0.015. The 
slope and intercept parameters of the bi-
nary power law pooled over years were b = 
1.22 and ln(Ax) = 1.81, respectively, and 
were significantly greater than 1 (P < 0.05) 
based on t tests. 

For the bootstrap-simulation data sets, 
p̂  ranged from 0.01 to 0.92, with a me-

dian of 0.019, and θ̂  ranged from 0.006 to 
0.386, with a median of 0.0497 (Table 1). 
The index of dispersion, D, ranged from 
1.16 to 7.78, with a median of 3.06. For 
the simulated sampling validation data 
sets, p̂ , θ̂ , and D ranged from 0.0007 to 
0.92 (median of 0.065), 0 to 0.37 (median 

of 0.05), and 0.97 to 7.78 (median of 2.17), 
respectively (Table 1). The binary power 
law provided an excellent fit to the simu-
lated sampling validation data sets (R2 = 
0.98), with intercept and slope parameter 
estimates of ln(Ax) = 0.84 and b = 1.26, 
respectively. Based on t tests, the intercept 
and slope of the simulated sampling vali-
dation data sets were not significantly 
different from the model construction data 
sets (P = 0.31 and 0.60, respectively). 

Sequential estimation. Bootstrap simu-
lation. Sequential estimation stop limits 
are presented in Figure 1. As expected, 
precision (C) increased as disease inci-
dence decreased, and the number of dis-
eased cones that needed to be sampled in 
order to end the sequential sampling in-
creased. For C = 0.2, confidence intervals 
based on the sign test included, or were 
less than, 0.2 for 11 data sets (61.1%) 
when p̂  ≥ 0.025 (Fig. 2A). It was not 
possible to achieve C = 0.2 for 0.01 ≤ p̂  ≤ 
0.025 (data sets 1 to 3), even when the 
sample size equaled the total number of 
sampling units (60 plants) in the data set 
(Fig. 2E). The achieved C tended to de-
crease with increasing p̂ , and C was less 
than 0.2 for 9 (42.9%) of the data sets. For 
C = 0.1, the median achieved C was 

Fig. 1. Sequential estimation stop limits for
estimating the mean incidence of powdery mil-
dew on hop cones with a coefficient of variation 
(C) of 0.1, 0.2, and 0.3. A, Cumulative number 
of diseased cones (TN) versus the total number 
of sampling units (N) according to equation 5 in 
Gent et al. (5), with binary power law parame-
ters b = 1.22 and a = 0.15. B, Mean disease 
incidence at critical TN (stop limit) in relation to 
N. Sampling ceases when the cumulative num-
ber of diseased cones crossed the critical TN in 
A; mean disease incidence was then calculated 
as TN/nN. 
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greater than the prespecified value in 16 
(76.2%) of the data sets, although the me-
dian achieved C was close to 0.1 (i.e., 
within 0.07) for the 17 data sets for which 
p̂  > 0.03. 

Median values of the difference between 
p and p̂  included 0 for the 21 data sets 
evaluated at C = 0.2 and 0.1 (Fig. 2C and 
D). When p was low (<0.10), p ≅  p̂  be-
cause the data sets were fully sampled 
(Fig. 2E and F) Variation in the difference 
between p and p̂  tended to increase with 
increasing p (5,21). The median number of 
sample units required to estimate p de-
creased as p increased, and was greater for 
C = 0.1 than 0.2 (Fig. 2E and F). It was 
possible to estimate p by sampling the 

minimum number of sampling units speci-
fied (three plants) in all but two simula-
tions when p > 0.6 and C = 0.2. 

Simulated sampling validation. For C = 
0.2, the median achieved C was 0.2108 (Q1 
= 0.1863 and Q3 = 0.2755, where Q1 and 
Q3 are the first and third quartiles, respec-
tively; Fig. 3A). Achieved C was less than 
the prespecified value except for data sets 
in which p < 0.025. For C = 0.1, achieving 
the specified C was not possible for data 
sets with p < 0.06, although the achieved C 
was near the specified values (<0.05 units 
difference) when p was > 0.06. Differences 
between p and p̂  were similar, and never 
deviated more than 15% from p (Fig. 3B). 
For C = 0.2 and C = 0.1, median values of 

the difference between p and p̂  were 0, 
with Q1 = –0.0018 and Q3 = 0.0086, and 
Q1 = 0.0000 and Q3 = 0.0000, respectively. 
The difference between p and p̂  tended to 
increase with p, as observed by bootstrap 
simulation (Fig. 2C and D). 

Sample size attained by sequential esti-
mation was inversely related to p and simi-
lar to the expected sample sizes predicted 
(13, equation 17b) using a and b calculated 
from the model construction data sets. 
Data sets were fully sampled when C = 0.1 
and p < 0.15, and when C = 0.2 and p < 
0.025 (Fig. 3C). 

Sequential classification. Stop limit se-
lection. Pairs of stop lines for sequential 
classification of the incidence of diseased 

 

Fig. 2. A and B, Box plots of the achieved coefficient of variation (C), C and D, difference between the true incidence of hop cones with powdery mildew, p, 
and the estimated p from the sequential sample ( p̂ ), and E and F, achieved sample size (N) for estimating the incidence of powdery mildew on hop cones 
from 100 simulated samplings of 21 bootstrap-simulation data sets used for bootstrap analysis. Preselected values of C were A, C, and E, 0.2 and B, D, and 
F, 0.1. Dashed lines in A and B indicate preselected values of C, and dashed lines in C and D indicate true p – achieved p = 0. Dashed lines are shown in E 
and F in place of box plots to indicate those data sets for which the preselected value of C could not be achieved even when the sample size equaled the total 
number of sampling units in the data set (i.e., 60). Sequential estimation stop lines were generated according to equation 2 of Gent et al. (5) with binary 
power law parameters of a = 0.15 and b = 1.22 (4). The 21 bootstrap-simulation data sets were chosen by selecting three data sets randomly from each of
seven disease incidence classes (0.01 < p < 0.025, 0.025 < p < 0.05, 0.05 < p < 0.10, 0.10 < p < 0.20, 0.20 < p < 0.40, 0.40 < p < 0.60, and p > 0.60) from 
among 221 model construction data sets collected from 2000 to 2005 in hop yards in Oregon and Washington. The 21 bootstrap-simulation data sets were 
arranged in ascending order of p. Box plots show the median (line in open boxes), middle 50% of the data (open box), confidence interval for the median
based on the nonparametric sign-test (solid bar inside box), extremes of the data points (whiskers), and outliers (solid circles). 
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cones, and OC and ASN curves were de-
rived by Monte Carlo simulation (Fig. 4A 
to C) for four combinations of α and β 
error rates for pt = 0.05. For α = β = 0.05, 
varying pt as well as the difference be-
tween p0 and p1 had a large effect on the 
slope and area between the stop lines, re-
spectively (Fig. 5A). Steepness of the OC 
curve and height of the ASN curve de-
creased as the magnitude of the difference 
between p0 and p1 increased (Fig. 5B and 
C). For a given combination of α = β, the 

distance between p0 and p1 determined the 
height of the ASN curve (i.e., how quickly 
a decision could be made; Fig. 5A and C). 
The wider limits (i.e., p0 = 0.10 and p1 = 
0.30) resulted in less sampling compared 
with narrow stop limits (i.e., p0 = 0.025 
and p1 = 0.075), but at a cost of higher 
error rates. 

Increasing the error rates resulted in a 
slight decrease in the area between the stop 

lines (Fig. 4A) and had no effect on the 
slope of the stop lines, as predicted (21; 
equation A4). The steepness of the OC 
curve was changed little by decreasing α 
or β (Fig. 4B); however, ASN increased by 
10 sampling units when p was near pt and 
when α and β were controlled at 0.05 
compared with 0.10 (Fig. 4C). 

Bootstrap simulation. Based on results 
of the Monte Carlo simulation, four sam-
pling plans were selected for further 

 

Fig. 3. Results of sequential sampling for estima-
tion validation for 13 representative data sets
collected from hop yards in Oregon and Washing-
ton during 2000 to 2005. A, Relationship between
true disease incidence (p) and the achieved coeffi-
cient of variation (C). B, Relationship between p
and estimated disease incidence ( p̂ ) from the 
sequential sample. C, Relationship between p and 
number of sampling units (N) collected. Solid 
circles and open triangles are data sets with prese-
lected values of C = 0.2 or 0.1, respectively. The 
dashed lines in A are the prespecified values of C 
= 0.2 (long dash) and 0.1 (short dash). The long-
dashed line in B is set at (p – p̂ ) = 0. The solid 
and dashed lines in C are the expected number
of sampling units given the true disease inci-
dence of the data set for C = 0.2 and 0.1, respec-
tively, as calculated by Madden and Hughes (13,
equation 17b). 

 

Fig. 4. Stop lines for classifying the incidence of 
powdery mildew on hop cones as above or be-
low a critical threshold, pt, from a cluster sample 
with n = 25 cones per sampling unit. A, Stop 
lines based on Wald’s sequence probability ratio
test (25) with p0 = 0.025 and p1 = 0.075 (pt = 
0.05) at four combinations of α and β. B, Oper-
ating characteristic (OC) curves and C, average 
sample number (ASN) curves for sequential
classification stop lines defined in A. Error 
probabilities are α = 0.05 and β = 0.05 (solid 
line), α = 0.10 and β = 0.05 (short dashed line), 
α = 0.05 and β = 0.10 (dotted line), and α = 
0.10 and β = 0.10 (dash-dot line). OC and ASN 
curves were determined by 1,000 Monte Carlo
simulations using a modification of the algo-
rithm described by Hoffman et al. (7), with the
parameter θ as a function of disease incidence 
according to the binary power law (described in 
the text), where a = 0.15 and b = 1.22. 

Fig. 5. A, Stop lines, B, operating characteristic 
(OC) curves, and C, average sample number 
(ASN) curves for sequential classification as 
determined by Wald’s sequential probability 
ratio test (25) for the incidence of powdery 
mildew on hop cones from a cluster sample with 
n = 25 cones per sampling unit. OC and ASN 
curves were determined by 1,000 Monte Carlo 
simulations using a modification of the algo-
rithm described by Hoffman et al. (7), with the 
parameter θ described as a function of disease 
incidence, p, according to the binary power law 
(described in the text and by Gent et al. [4]), 
where a = 0.15 and b = 1.22. Error probabilities 
in all cases were set at α = β = 0.05. The critical 
value, pt, is written adjacent to the correspond-
ing stop lines in A. The parameters p0 and p1 of 
the stop lines are given in the text. 
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evaluation by bootstrap analysis. The pa-
rameters of these sampling plans were pt = 
0.05 and pt = 0.15 at error rates of α = β = 
0.05 and α = β = 0.10 (Fig. 6A to D). 
Achieved OC and ASN among the 21 data 
sets were similar to the OC and ASN 
curves derived by Monte Carlo simulation, 
with two exceptions. ASN for the data sets 
where p̂  = 0.047 and 0.052 were ap-
proximately 7 (α = β = 0.05) and 5 (α = β 
= 0.10) sampling units, respectively, 
greater than predicted by Monte Carlo 
simulation. The beta-binomial parameter θ 
in these data sets was 0.021 ( p̂  = 0.047) 
and 0.21 ( p̂  = 0.052), although θ pre-
dicted by the binary power law for these 
data sets was 0.0399 and 0.0692, respec-
tively (4, Fig. 2) 

Simulated sampling validation. Correct 
decisions were made for 12 (92%) data 
sets at pt = 0.05 and 0.15 with error rates 
of α = β = 0.05 or 0.10, respectively, when 
stop lines were calculated assuming a bi-
nomial distribution of disease incidence 
(Table 2). The type I error occurred when 
pt = 0.05 for a data set with p = 0.047, and 
the type II error occurred when pt = 0.15 

for a data set with p = 0.19. Type I and II 
errors were identical for stop lines calcu-
lated using a beta-binomial approxima-
tion, with the exception of pt = 0.05 with 
α = β = 0.05. With these parameters, no 
classification errors were made for the 13 
data sets evaluated. Median and mean N 
over the 13 data sets were greater by 2 to 
3.93 sampling units, respectively, for the 
beta-binomial stop lines than the binomial 
stop lines for pt = 0.05 (Table 2). The 
greatest difference between N of the bi-
nomial and beta-binomial stop lines was 
observed for data sets with p < 0.02 from 
pt (Fig. 6C). For the data set where the 
type I error occurred at α = β = 0.05 us-
ing the binomial stop lines, 3 sampling 
units were assessed using the binomial 
stop lines and 26 were assessed using the 
beta-binomial stop lines. Mean and me-
dian N were identical for the binomial 
and beta-binomial stop lines at pt = 0.15. 
Disease incidence was classified after 
assessing three sampling units for 11 
(84.6%) of the data sets, and 4 sampling 
units for two data sets with p̂  close to pt 
( p̂  = 0.11 and 0.19). 

DISCUSSION 
Evaluations of hop cones for powdery 

mildew is labor and time intensive, and 
tends to be cost prohibitive for routine use 
in disease management. Therefore, hop 
growers in the Pacific Northwest typically 
do not make quantitative estimates of 
powdery mildew incidence in cones prior 
to harvest. The sequential sampling plans 
developed in this study for estimating and 
classifying the incidence of powdery mil-
dew on cones performed well when evalu-
ated by bootstrap analysis and simulated 
sampling of data sets with similar statisti-
cal properties. Implementation of these 
sampling plans should reduce sampling 
costs without compromising precision of 
disease assessments. 

Unfortunately, independent data sets 
were not available to validate the sampling 
plans by simulated sampling. The use of 
resampling statistics is typical for many 
model validation studies (2,14,22) and, in 
some cases, sampling models are not vali-
dated at all (15). Binns et al. (2) note that 
the strength of resampling methods is that 
field-to-field variability of a sampling plan 
can be assessed. In this regard, the sam-
pling plans evaluated in the current study 
performed as intended under simulated 
sampling with data sets that encompassed 
the range of disease incidence and hetero-
geneity typically observed in hop yards in 
Oregon and Washington from 2000 to 
2005 (4). 

Overall, the sequential estimation plan 
developed for cones performed similarly to 
the sampling plans for leaves (5). For both 
types of sampling plans, it was not possi-
ble (with the number of sampling units 
considered in this study) to estimate dis-
ease incidence with a desired precision of 
C = 0.1 when disease incidence was low. 
This agrees with findings from other crop-
ping systems, that very large sample sizes 
(e.g., >300 sampling units) are needed to 
estimate disease incidence with a C = 0.1 
(15,21,22). For both leaf (5) and cone es-
timates, the median differences between 
the true and estimated disease incidence 
were near 0, indicating that the sampling 
plans, on average, provided a close esti-
mate of the true p of the data set. Appar-
ently, variability in heterogeneity of the 
incidence of powdery mildew on hop 
cones (and leaves) among hop yards and 
over time had little effect on the perform-
ance of the sampling models. Further in-
vestigation is needed to determine the 
stability and portability of the binary 
power law parameters and practical impli-
cations for sampling. 

For sequential classification, altering the 
distance between stop lines had a large 
influence on OC and ASN curves, whereas 
varying α or β had relatively little effect on 
these curves. As noted by Nyrop et al. 
(17), the critical density (pt in this study) 
of a pest is often the least-well-known 
parameter when sequential sampling plans 

 

Fig. 6. A and B, Operating characteristic (OC) and C and D, average sample number (ASN) curves for 
sequential classification sampling plans as determined by Wald’s sequential probability ratio test (25)
for the incidence of powdery mildew on hop cones. Threshold values are A and C, p0 = 0.025, p1 = 
0.075, and pt = 0.05; and B and D, p0 = 0.05, p1 = 0.25, and pt = 0.15. OC and ASN curves were de-
termined by 1,000 Monte Carlo simulations using a modification of the algorithm described by Hoff-
man et al. (7), with the parameter θ as a function of mean disease incidence, p, according to the binary 
power law (described in the text and by Gent et al. [4]), a = 0.15, and b = 1.22. The achieved OC and 
ASN from 100 bootstrap simulations of sequential sampling for classification from 18 yard-level data 
sets; simulations were at α = β = 0.05 (open circles and dotted line) and at α = β = 0.10 (solid circles, 
solid line). The 21 bootstrap-simulation data sets were chosen by selecting three data sets randomly
from each of seven disease incidence classes (0.01 < p̂  < 0.025, 0.025 < p̂  < 0.05, 0.05 < p̂  < 0.10, 
0.10 < p̂  < 0.20, 0.20 < p̂  < 0.40, 0.40 < p̂  < 0.60, and p̂  > 0.60) from among 201 model con-
struction data sets collected from hop yards in Oregon and Washington from 2000 to 2005 (4). Data 
are not presented for data sets in which p̂  > 0.20 when pt = 0.05, or p̂  > 0.50 when pt = 0.15 because 
OC = 0 and ASN ≈ 3 for these data sets. 
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for classification are developed, but have 
the greatest influence on the OC function 
and, therefore, correct decision rates. Un-
fortunately, economic thresholds or eco-
nomic injury levels for powdery mildew on 
hop cones (or leaves) have not been devel-
oped. Data reported by Royal and Griffin 
(19) showed that powdery mildew inci-
dence on hop cones from 2.3 to 17% was 
not significantly correlated with reductions 
in yield or α-acid content of the cones in a 
fungicide trial conducted in England. Al-
though this suggested a threshold for pow-
dery mildew on cones of at least 17% for 
the cultivar evaluated in that study, Royal 
(18) cautioned that the absence of correla-
tion between disease incidence and yield 
and α-acid content may have resulted from 
late development of the disease or con-
founding interactions with hop downy 
mildew (caused by Pseudoperonospora 
humuli). 

Mahaffee et al. (16) noted that, in 2001, 
50% of the hop cone lots of the aroma cv. 
Willamette were rejected by the contract-
ing brewery because of cone browning 
associated with diffuse infections by Po-
dosphaera macularis that were largely 
nondetectable to the unaided eye. Appar-
ently, thresholds for yield and quality 
losses in cones caused by powdery mildew 
differ between aroma hops and bittering 
hops, the latter intended for the α-acid 
extract market in which cone appearance is 
of secondary importance to α-acid content. 
As noted for powdery mildew on leaves 
(5), many growers likely have provisional 

thresholds for powdery mildew of cones 
that are based on past experience, the in-
tended market or contracting brewery of 
the crop, cultivar type (i.e., aroma or bitter-
ing cultivar), and their risk aversion. Like 
sequential classification plans for leaves 
(5), sampling plans were developed and 
evaluated for four values of pt so that dis-
ease thresholds can be selected that are 
similar to the provisional threshold of in-
dividual growers or cultivar types. Al-
though the thresholds are somewhat arbi-
trary, the thresholds are reasonable 
estimates and could improve disease man-
agement decision making compared with 
routine prophylactic treatments (2) or cur-
rent sampling protocols (4). Uncertainties 
associated with the thresholds used in the 
sequential classification plans could be 
avoided if mean disease incidence was es-
timated by sequential estimation. Nonethe-
less, the sequential sampling models for 
cones should be helpful for improving the 
efficiency of assessing the incidence of 
powdery mildew in young cones and mak-
ing decisions about late-season fungicide 
applications or determining harvest dates to 
minimize losses by cone early maturity (3). 

Turechek et al. (23) reported that the 
mean incidence of powdery mildew on 
leaves explained 68% of the variability in 
the mean incidence of powdery mildew on 
cones. Potentially, the incidence of pow-
dery mildew on leaves could be deter-
mined by sequential samplings and used to 
predict the incidence of diseased cones. 
These predictions could aid growers in 

making management decisions for the 
foliar phase of the disease to limit the risk 
of severe cone infection. However, it is 
unclear when leaf assessments should be 
made to most accurately predict disease 
incidence on cones, or how well such as-
sessments would perform under varying 
disease thresholds. Receiver operating 
characteristic curve analysis (24) may help 
to resolve these questions once predictive 
models for cone infection are developed. 
Linkage of sequential sampling models for 
the leaf and cone phase of the disease 
should become clearer after the relation-
ship between the foliar and cone phases of 
hop powdery mildew are quantified more 
precisely. 

In conclusion, the sequential sampling 
plans developed in this research were ca-
pable of estimating disease incidence with 
reasonable precision (C = 0.2), or classify-
ing disease incidence with acceptable ac-
curacy, while assessing few sampling 
units. Sequential sampling overcomes the 
limitation of fixed sampling plans devel-
oped previously for powdery mildew on 
cones (4), and may aid in implementation 
of threshold-based management of hop 
powdery mildew on cones. More efficient 
sampling of powdery mildew incidence 
also may help growers to make better deci-
sions regarding late season management of 
the disease on cones. 
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