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Abstract

A multispectral imaging system and image processing algorithms for food safety inspection of poultry carcasses were demon-

strated. Three key wavelengths of 460, 540, and 700nm, previously identified using a visible/near-infrared spectrophotometer, were

implemented in a common-aperture multispectral imaging system, and images were collected for 174 wholesome, 75 inflammatory

process, and 170 septicemic chickens. Principal component analysis was used to develop an algorithm for separating septicemic

chickens from wholesome and IP chickens based on average intensity of first component images. A threshold value of 105 was able

to correctly separate 95.6% of septicemic chickens. To differentiate inflammatory process chickens, a region of interest was defined

from which spectral features were determined. The algorithm was able to correctly identify 100% of inflammatory process chickens

by detecting pixels that satisfied the spectral feature conditions. A decision tree model was created to classify the three chicken con-

ditions using inputs from the two image processing algorithms. The results showed that 89.6% of wholesome, 92.3% of inflammatory

process, and 94.4% of septicemic chickens were correctly classified.
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1. Introduction

The Poultry Products Inspection Act (PPIA) requires
Food Safety and Inspection Service (FSIS) inspectors of

the United States Department of Agriculture (USDA) to

conduct post-mortem inspection for wholesomeness of

all chickens intended for sale to US consumers (USDA,

1984). Poultry inspection is a complex process. FSIS
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inspectors are trained to recognize infectious condition

and avian diseases, dressing defects, fecal and digestive

content contamination, and conditions that are related
to many other consumer protection concerns. FSIS

has just completed a three-year transformation of its tra-

ditional inspection system to a Hazard-Analysis-and-

Critical-Control-Point (HACCP) inspection system.

Under this new system, FSIS inspectors still do a bird-

by-bird organoleptic examination, but FSIS personnel

also monitor a producer-run HACCP plan, which is

developed by each plant and approved by FSIS. Under
HACCP, increasing consumer demand and line speeds

will continue to increase the need for and pressure on

inspectors. Thus, to address food safety concerns and

meet growing consumer demand, there is an urgent

need to develop automated inspection systems that can

mailto:chaok@ba.ars.usda.gov 


226 C.-C. Yang et al. / Journal of Food Engineering 69 (2005) 225–234
operate on-line in real-time in the slaughter plant envi-

ronment. These systems should be able to accurately de-

tect and identify carcasses with infectious condition,

particularly septicemia/toxemia. They should also detect

avian diseases, particularly airsacculitis, ascites, and

inflammatory process (IP).
Machine vision is a non-invasive technology that pro-

vides automated production processes with vision capa-

bilities when the majority of inspection tasks are highly

repetitive, and their effectiveness depends on the effi-

ciency of the human inspectors. A number of investiga-

tors have demonstrated various applications using

machine vision techniques for agricultural and food

industries, particularly in grading and inspection (Miller
& Delwiche, 1989; Precetti & Krutz, 1993; Sakar &

Wolfe, 1985; Tao, Morrow, Heinemann, & Sommer,

1990). Although implementations of machine vision

technologies have generally concentrated on quality

assessments, interest in addressing food safety issues

has been steadily increasing in recent years. The broad-

band spectral characteristics of color machine vision

techniques traditionally used in systems for quality
assessments have been found less effective for some food

safety issues compared to some more recently developed

techniques such as multispectral imaging systems (Chen,

Chao, & Kim, 2002).

A multiwavelength imaging system could be imple-

mented in several ways: using a filter wheel, a liquid

crystal tunable filter (LCTF), several cameras with fil-

ters, or a single camera with beamsplitter. A critical
issue that should be considered in real-time operations

of these devices is the amount of time between sequen-

tially acquired images at different wavelengths. This is

a function of both the image capturing speed and band

switch speed. Electromechanical filter wheels have limi-

tations in the speed of wavelength switching. Improve-

ment in LCTF technology makes a LCTF system

superior to electromechanical filter wheels in both speed
and flexibility of spectral selection (Evans, Thai, &

Grant, 1997). The time required for the LCTF to switch

between wavelengths is approximately 50ms (Mao &

Heitschmidt, 1998). However, this still makes the system

unsuitable for synchronization with moving objects dur-

ing high-speed inspection. Recent advances in optical

design make common aperture systems, which allow

multispectral (two to four spectral bands) imaging of
samples with a single acquisition, promising for real-

time operation.

In developing such vision inspection systems it is

essential to first identify key wavelengths, then develop

algorithms based on those wavelengths, and finally

implement them for on-line applications. For example,

Windham, Lawrence, Park, and Buhr (2003) and Park,

Lawrence, Windham, and Buhr (2002) have used a visi-
ble/near-infrared (Vis/NIR) monochromator to identify

wavelengths associated with fecal absorption bands,
and then, using hyperspectral imaging, evaluated those

wavelengths and developed image-processing algo-

rithms. For food safety inspection of poultry carcasses,

wavelengths associated with infection conditions have

been identified using a visible/near-infrared spectropho-

tometer (Chao, Chen, & Chan, 2003).
The main objective of this study was to develop

multispectral image processing algorithms for the detec-

tion of infectious poultry conditions. An imaging system

was designed using a multispectral common-aperture

camera with three interference filters in the visible wave-

length range. Two image-processing algorithms were

developed for the specific identification of septicemic

and inflammatory process chickens. A decision tree
model was constructed for the classification of whole-

some, septicemic, and inflammatory process chickens.
2. Materials and methods

2.1. Sample collection

Eviscerated chicken carcasses were identified and col-

lected by USDA FSIS veterinarians from Allen Family

Foods (Cordova, MD, USA). A total of 245 unwhole-

some carcasses (170 septicemia and 75 inflammatory

process) and 174 inspected and passed wholesome car-

casses were collected over a three-month period in

2003. Septicemia is a systemic disease caused by patho-

genic microorganisms in the blood, and its symptoms
are visible on the exterior of the carcass. Inflammatory

process (IP) is a physiologic condition when the yolk

sac was not completely absorbed after hatching and

has progressed into a pathological inflammatory proc-

ess. The IP lesions are normally observed between the

skin and the ventral abdominal muscle tissue in the peri-

neal area after the vent is opened and the eviscerator has

drawn out the internal visceral organs.
Chicken carcasses were identified according to the

condemnation conditions and placed in plastic bags to

minimize dehydration. The bags were then placed in

coolers, covered with ice, and transported to the Instru-

mentation and Sensing Laboratory (ISL) located in

Beltsville, MD, USA, within 2h for the experiments.

2.2. Multispectral imaging system

The multispectral imaging system consists of a three-

channel common aperture camera (MS2100, Duncan-

Tech, Auburn, CA, USA), a frame grabber (PCI-1428,

National Instruments, Austin, TX, USA), an industrial

computer (BSI, City of Industry, CA, USA), and eight

100-W tungsten halogen lights. The three-channel com-

mon aperture camera utilizes a color-separating prism to
split broadband light entering the camera through the

lens into three optical channels. An interference filter
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and charge-coupled-device (CCD) imaging array are

placed at each of the three exit planes of the prism.

The image acquired by each channel (656 · 493 pixels)
is formed by the wavelengths of light that have been

passed through each optical path in the prism. Control

of the camera settings, such as triggering mode, output
bit depth (8bits), and the integration time of exposure

and the analog gain at the CCD sensor before the image

was digitized for each imaging channel, is accomplished

using the CameraLink utility program (DuncanTech,

Auburn, CA, USA). Signals from the CCD imaging ar-

rays are digitized by the frame grabber. From each of

the three channels, an 8-bit monochrome image is saved.

2.3. Wavelength selection

The results of a previous study examining visible/

near-infrared spectral variations of poultry carcasses

(Chao et al., 2003) were considered in selecting the
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Fig. 1. Percentage reflectance of (a) average spectra and (b) second

difference spectra for wholesome and unwholesome chicken images.
wavelengths for the interference filters. Fig. 1(a) and

(b) shows the average reflectance spectra and second

difference spectra, respectively, for wholesome and

unwholesome chickens. The average reflectance spectra

for both wholesome and unwholesome chickens in the

region above 650nm show high percentage reflectance
and a lack of distinct spectral features. For this reason,

the 700nm wavelength was selected as one of the three

center wavelengths to create masks for image process-

ing. In the second difference spectra, wholesome and

unwholesome spectra are significantly different at 460,

490, 540, and 578nm. From these, 460 and 540nm were

selected for the other two center wavelengths. Conse-

quently, interference filters with center wavelengths at
461.75nm (full width at half maximum, or FWHM, of

20.78nm), 541.80nm (18.31nm FWHM), and 700.07nm

(17.40nm FWHM) were used for the three-channel

common aperture camera.

2.4. Camera illumination and settings

The layout of the multispectral imaging system is
illustrated in Fig. 2. The horizontal distance between

the camera lens and the shackle holding the chicken,

where located the field of view, is 813mm. For each

channel, the image size is 656 · 493 pixels. The field of
view is 397mm · 298mm; therefore, the image resolu-
tion is 0.37mm2 per pixel. Viewed from the shackle posi-

tion, the eight tungsten halogen lights are arranged in

four pairs, with two adjacent pairs 318mm above the
camera and two adjacent pairs 318mm below the cam-

era. Side by side, the two upper pairs span 190mm, as

do the two lower pairs. Viewed from the side, the upper

pairs are positioned 267mm from the field of view

(546mm from the camera) while the lower pairs are

positioned slightly further at 305mm from the field of

view (508mm from the camera). This lighting arrange-

ment provides more illumination to the lower body of
the bird, including the thighs, compensating for what

would otherwise be insufficient lighting in the upper

image area.

A Spectralon diffuse reflectance target of 99% reflect-

ance (Labsphere, North Sutton, NH, USA) was used as

a calibration target to determine the proper integration

time and gain for the lighting arrangement described

above. It was found that the spectral image was safely
below saturation level when the average intensity (across

all pixels) was at 200. From this determination, the inte-

gration time and gain for the 700 and 540nm channels

were set. The gain and integration time were set at

2dB and 4.5ms for 700nm, and at 3dB and 5.0ms for

540nm. However, using the average pixel intensity of

200 as a guideline, saturation was observed for the

460nm channel (gain of 9dB and the integration time
of 9.5ms). To reduce illumination and eliminate satura-

tion for the 460nm channel, the integration time was



Fig. 2. The layout of a multispectral imaging system for poultry carcass inspection: (a) side view, (b) front view, (c) top view.

Fig. 3. Example multispectral images of wholesome, septicemic, and

inflammatory process chickens at 460, 540, and 700nm wavelengths.
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reduced to 9ms while maintaining the gain at 9dB.

These settings were used for relative reflectance calcula-

tion and calibration of the chicken images.

Compared to the Spectralon images, the chicken
images required longer integration time since the chicken

reflectance was much lower than that of the Spectralon.

Using the same gain values, integration time was in-

creased until the average image intensity was higher than

120, at which point the image was determined to be clear

and without saturation. In this manner, the integration

time was then set at 5, 10, and 18ms for the 700, 540,

and 460nm channels, respectively.

2.5. Multispectral image collection and preprocessing

Images were taken from 174 wholesome chickens, 170

septicemic chickens, and 75 inflammatory process chick-

ens using the CameraLink utility program. Each bird

was hung on the shackle with a black background.

The front- and back-sides of carcass were imaged. For
each chicken three images were simultaneously obtained

at 700, 540, and 460nm. Fig. 3 shows example images

for three chickens: one wholesome, one septicemia,

and one inflammatory process. It should be noted that

on each day some Spectralon images were taken for

the relative reflectance calculation on that day in order

to eliminate image variation.

Using MATLAB 6.1 (MathWorks, Inc., Natick, MA,
USA), three image preprocessing steps were performed,

as diagrammed in Fig. 4. First, relative reflectance calcu-

lation was performed according to Eq. (1):
I ¼ I0 � B
W � B

; ð1Þ

where I is the relative-reflectance image, I0 is the original
image, B is the dark reference image, andW is the white

Spectralon reference image. Second, the 700nm image

was used to build a mask. The intensity for the black

background at 700nm was always below 20, whereas



Fig. 4. The diagram of multispectral image collection and preproc-

essing procedure.

Fig. 5. Definition of the region of interest for differentiating inflam-

matory process chickens from other chicken conditions.
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the chicken intensity was always above 20. Thus, the
threshold value of 20 was used to create the mask.

Third, the mask was applied to each of the three channel

images for image segmentation. This resulted in the

background pixels of each image being reset to zero;

the intensity values for other pixels remained the same.

2.6. Multispectral image processing

Two image processing methods were used in this

study: principal component analysis (PCA) and region

of interest (ROI) analysis. PCA is a technique used to

approximate the original data with lower dimensional

feature vectors, since the data from multiple spectral

bands often involve a certain degree of redundancy.

The basic approach is to compute the eigenvectors of

the covariance matrix, and approximate the original
data by a linear combination of the leading eigenvectors.

For a multispectral image of k spectral channels each

with m · n pixels, the image data is reorganized into
two-dimensional array X of size s by k where

s = (m · n). The covariance matrix of X is defined as:

Cx ¼
X
T
X

s� 1 ; ð2Þ

where Cx is a matrix of size k · k; and X is the s · k
mean-centered matrix of X, determined by first calculat-

ing the mean for each column, and then subtracting the

column mean from each value in that column. In the

PCA decomposition, the pi vectors are eigenvectors of

the covariance matrix Cx. For each pi,
Cxpi ¼ kipi; ð3Þ
where ki is the eigenvalue associated with the eigenvector
pi. Each principal component PCi is denoted by

PCi ¼ X 1p1i þ X 2p2i þ X 3p3i þ � � � þ X kpki: ð4Þ
Each principal component is a weighted sum of the k

channel images.

Ten wholesome, 10 inflammatory process, and 10

septicemic chickens were randomly selected from the

data collection. For each chicken, the three spectral
channel images were mean centered; i.e. for each chan-

nel, the average intensity of the image was subtracted

from the value of each pixel. Single value decomposition

(SVD) was performed using MATLAB to calculate the

eigenvectors pi of the covariance matrix Cx for each of

the 30 chickens. The average eigenvector pi values were

calculated for the 30 chickens.

The spectral data for the remaining 164 wholesome,
65 inflammatory process, and 160 septicemic chickens

were mean centered, and then the principal components

were calculated for each chicken using these mean-

centered matrices with the average eigenvector pi values

calculated from the previous 30 chickens. Then, the

average intensities of the principal component images

were calculated for analysis. This image processing

was performed for both front and back images of each
chicken.

The ROI analysis was developed for specific area of

the chicken carcass. Localized symptoms of inflamma-

tory process occur in the area of the lower abdomen

and its junction with the thigh. Therefore, this area

was chosen as the ROI for differentiating inflammatory

process from other chicken conditions. Generally, the

ROI can be observed only from the front-side image.
Fig. 5 shows the outline of this ROI. Using edge detec-

tion, the central line of the chicken body was determined

by the middle point between two drumsticks. Along the
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central line, a 40-pixel (24mm) wide strip was made up

to ensure the proper detection of the chicken body edge.

Within the strip, the top and bottom edges of the chick-

en body were detected and the body length between the

two edges, designated as DL in Fig. 5, was calculated.

The top edge was then defined as the top boundary of
the ROI. The bottom boundary of the ROI was defined

at 25% of body length DL measured from the top

boundary. Within the top and bottom boundaries, the

right and left edges of the chicken body were detected.

The body width and the center point between the two

edges (distance of DW in Fig. 5) were calculated. From

the center point, the right and left boundaries of the re-

gion of interest were defined at 25% of DW to the right
and 25% of DW to the left, respectively.

From each of 10 images of inflammatory process

chickens, a 4 · 4 block of 16 neighboring pixels was se-
lected from an area showing inflammatory process

symptoms within the ROI, for a total of 160 pixels. An-

other 160 sample pixels were selected within the ROI

from 10 wholesome chicken images, and another 160

from 10 septicemic chicken images. The intensities of
these 480 sample pixels at each of the three wavelengths

were analyzed to generate representative features or

equations to differentiate inflammatory process chickens

from other chicken conditions. The generated features

would be presented in Section 3.

2.7. Image classification

A decision tree model uses a machine-learning algo-

rithm that learns the input/output pattern from training

data and generates a series of if-then decision rules to

appropriately represent the pattern (Breiman, Fried-

man, Olshen, & Stone, 1984; Han & Kamber, 2001;

Yang et al., 2003). The structure of a decision tree model

can be represented by a flowchart diagram such as that

shown in Fig. 6. At the top of the decision tree, a ‘‘root
node’’ represents the entire data set. According to an if-

then decision rule, the data set is divided into two

groups, represented by two ‘‘child nodes’’. This com-

pletes one new tree level. Like the root node, each child

node in this first level becomes a ‘‘mother node’’ for the

next level, i.e. each set is divided again using an if-then

decision rule to create two groups represented by two

new child nodes. These subsequent child nodes either
also become mother nodes, or become ‘‘terminal

nodes’’. At a terminal node, further divisions are

prevented if (1) all the data belong to the same output

category, or (2) the conditions of a stopping rule are

met.

The C&RT algorithm (AnswerTree 3.0, SPSS, Chi-

cago, IL, USA) was used in this study to create a deci-

sion tree model for classification of chicken conditions.
The computer program AnswerTree would automati-

cally generate the decision tree model that contained
several decision rules. The details of model generating

could be referred to Breiman et al. (1984) and Yang

et al. (2003). For each chicken, there were two input var-

iables for the model: the principal component image

intensities and pixels in the region of interest as identi-

fied by representative features for inflammatory process.

The output variable was the chicken category: whole-

some, septicemia, or inflammatory process. To deter-
mine the proper stopping rules, a sensitivity analysis

was carried out using 25 wholesome, 25 inflammatory

process, and 25 septicemic chickens randomly selected

from the data. The result found that the classification

accuracy was reduced when the data set contain more

than five chickens at a mother node, or more than two

chickens at a terminal node. Also, the performance of

decision tree could not be improved further when the
decision tree level was more than six. Therefore, three

stopping rules were used to avoid over-fitting: (1) At a

mother node, the data set must contain at least five

chickens; (2) a terminal node must contain at least two

chickens; and (3) the maximum number of tree levels

is six. Ten-fold cross-validation was used for creating

this classification model. The data, consisting of 164

wholesome, 65 inflammatory process, and 160 septice-
mic chickens, were first randomly split into 10 sub-

groups. A decision tree was generated with nine of the

10 subgroups and validated by the remaining subgroup.

This process was repeated ten times, using each sub-

group once for validation, and the overall successful

classification rate was determined.
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3. Results and discussion

3.1. Image processing—principal component analysis

Using PCA for 10 wholesome, 10 inflammatory proc-

ess, and 10 septicemic sample chickens, the covariance
eigenvectors and eigenvalues for each spectral channel

were calculated. For the front-side chicken images, the

first principal component (PC1) was found to account

for 97.6–99.5% of the total variance. For the back-side

chicken images, PC1 accounted for 98.1–99.4% of the

total variance. These results showed that the first princi-

pal component images could adequately represent the

total variance of the original images. Table 1 shows
the average and standard deviation for the PC1 covari-

ance eigenvector for front- and back-side images of the

30 chickens.

The covariance eigenvectors were used to determine

the value of PC1 for each pixel in an image according

to the equations below:

ðfront-sideÞ PC1 ¼ X 700 � 0:6567þ X 540 � 0:5882
þ X 460 � 0:4556; ð5Þ

ðback-sideÞ PC1 ¼ X 700 � 0:6587þ X 540 � 0:5794
þ X 460 � 0:4739; ð6Þ

where X 700;X 540;X 460 are the mean-centered reflectance

images at the 700, 540, and 460nm spectral channels,

respectively. PC1 was calculated for 164 wholesome,

65 inflammatory process, and 160 septicemic chickens
using these equations.

For each chicken, the average intensities of the PC1
front-side image and back-side image were calculated.

Fig. 7 shows correlation plots for the front- and back-

side images in each category. The linear regression

correlation coefficients were relatively high: 0.63 for

wholesome, 0.78 for inflammatory process, and 0.69

for septicemic chickens.
Fig. 8 shows a plot of the front- and back-side aver-

age PC1 pixel intensities for all three categories, with the

intensity threshold of 105 marked. For front-side chick-

en images, 95.6% (153 out of 160) of septicemic chic-

kens fell below this threshold while 70.8% (46 out
Table 1

The average covariance eigenvectors and standard deviations of the

first principal component for three wavelengths and for front- and

back-side of chicken images

Wavelength

700nm 540nm 460nm

Front-side Eigenvector 0.6567 0.5882 0.4556

Standard deviation 0.0503 0.0535 0.1011

Back-side Eigenvector 0.6587 0.5793 0.4739

Standard deviation 0.0498 0.0383 0.0448
of 65) of inflammatory process chickens and 90.9%

(149 out of 164) of wholesome chickens were above that

threshold. For back-side chicken images, 87.2% (140 out

of 160) septicemic chickens fell below this threshold

while 80.0% (52 out of 65) of inflammatory process

chickens and 87.2% (143 out of 164) were above that

threshold.
The average PC1 intensity for septicemic chickens ap-

pears to be significantly lower than that of wholesome

and inflammatory process chickens. Using the threshold
50
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Fig. 8. The average first-principal-component intensities of chicken

images and the threshold intensity to differentiate septicemic chickens

from other chicken conditions.
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of 105, wholesome and inflammatory process chickens

are not clearly distinguished from each other. However,

the front-side images appear to result in better separation

for septicemic chickens than the back-side images do.

3.2. Image processing—region of interest analysis

Table 2 shows statistics for the 480 sample pixels

from the ROI areas from 10 chicken images for each cat-

egory. Compared to the wholesome and septicemia con-

ditions, the intensity of the inflammatory process

condition appears to be higher at 540nm and lower at

460nm.

Based on the trail-and-error sensitivity analysis, it
was found that the ratio of intensity of two wavelengths

could be used to separate more inflammatory process

chickens from others. Three ratio combinations were

tested by sensitivity analysis and the criteria were se-

lected when the highest classification accuracy was ob-

tained. Thus, three representative features were

generated to differentiate pixels showing inflammatory

process chicken condition from wholesome and septi-
cemia pixels. In the following rules, based on the spec-

tral intensities of the ROI pixels which could be

influenced by the presence of deoxymyoglobin and oxy-

myoglobin, I700 is the intensity at 700nm, I540 is the

intensity at 540nm, and I460 is the intensity at 460nm:

I540
I460

> 2:18; ð7Þ

I540
I700

> 0:85; ð8Þ

I460
I700

< 0:68: ð9Þ

After these features were determined, all pixels in the

ROI for all of the chicken images were analyzed. Pixels

that satisfied all three-feature conditions were identified

as inflammatory process pixels, and chicken images con-

taining those pixels were classified as inflammatory

process chickens.
Table 2

Statistics for intensities of 160 sample pixels within the region of interest reg

Minimum

Wholesome 700nm 71

540nm 55

460nm 40

Inflammatory process 700nm 67

540nm 56

460nm 19

Septicemia 700nm 64

540nm 35

460nm 25
As shown in Fig. 9, 100% of inflammatory process

chickens (65 chickens) contained pixels satisfying all

three features (Eqs. (7)–(9)) within the ROI and thus

were correctly identified as inflammatory process chick-

ens. Also from Fig. 9, 88.4% of wholesome chickens

(145 out of 164 chickens) and 80.6% of septicemic chick-
ens (129 out of 160 chickens) contained no pixels identi-

fied by all three feature rules and thus were correctly

identified as non-inflammatory process chickens. The

erroneous classification of 11.6% of wholesome and

19.4% of septicemic birds as inflammatory process birds

due to 50 or fewer pixels, was considered acceptable

since the feature rules were designed to err on the side

of misidentification of wholesome and septicemic birds
rather than to misidentify inflammatory process birds.

Approximately 24.6% (16 of 65) inflammatory process

birds were correctly classified by ROI analysis due to

10 or fewer pixels out of the total ROI area. Since the

area in which an eviscerated bird will show signs of

the inflammatory process condition is limited to the ex-

posed meat around the vent opening, an effective analy-

sis method needs to be capable of detecting very small
areas such as the ten-pixel area of 3.70mm2.

3.3. Image classification—combination of image

processing analyses

Because the results found that either PCA or ROI

method could separate only one unwholesome chicken

condition from others, it is necessary to combine two
methods as one process. To apply two methods sequen-

tially, one method was applied first on all chickens in

order to separate condemned chickens, and another

method was applied to chickens not condemned by the

first method. Table 3 shows the results of applying

the PCA and ROI methods sequentially. Applying the

PCA method to all chickens followed by applying

the ROI analysis to uncondemned chickens by the
PCA method, 79.9% of wholesome (131 out of 164),

70.8% of inflammatory process (46 out of 65), and 95.6%

of septicemic chickens (153 of out 160) could be correctly

identified. When applying the ROI method first to all
ion of interest for each chicken condition

Maximum Average Standard deviation

112 88.9 9.1

117 77.9 13.9

91 59.3 11.9

131 100.8 15.5

135 93.1 17.5

75 47.0 13.5

119 90.7 16.6

128 63.9 26.5

101 49.2 19.7



Table 3

Classification accuracy and misclassification matrix for the amounts and the percentages of chickens classified by combination of principal

component analysis (PCA) and region of interest analysis (ROI)

Sequence of application Classification Real conditions

Wholesome Inflammatory process Septicemia

PCA, then ROI Wholesome 131 0 7

(79.9%) (0%) (4.4%)

Inflammatory process 18 46 0

(11.0%) (70.8%) (0%)

Septicemia 15 19 153

(9.1%) (29.2%) (95.6%)

ROI, then PCA Wholesome 131 0 7

(79.9%) (0%) (4.4%)

Inflammatory process 19 65 30

(11.6%) (100%) (19.4%)

Septicemia 14 0 122

(8.5%) (0%) (76.3%)
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Fig. 9. The percentage of chicken images identified by the spectral features within the region of interest for each category of chickens based on the

numbers of pixels that satisfied the conditions of Eqs. (7)–(9): group (A) classified as non-inflammatory process, and group (B) classified as

inflammatory process.

C.-C. Yang et al. / Journal of Food Engineering 69 (2005) 225–234 233
chickens and the PCA method afterwards to un-con-

demned chickens by the ROImethod, the same classifica-

tion accuracy for wholesome chickens was obtained;

100% of inflammatory process (65 out of 65) and
76.3% of septicemic chickens (122 out of 160) were cor-

rectly classified. In both cases, no inflammatory process

birds and only 7 of 160 septicemic birds were misclassi-

fied as wholesome. However, 20% of wholesome birds

were misclassified into one of the unwholesome catego-

ries, and a high classification rate could only be obtained

for only one unwholesome condition or the other: either

septicemia or inflammatory process, but not both.

3.4. Image classification—decision tree model

The decision tree model developed in this study used

15 decision rules based on outputs from the two image
processing algorithms. The decision rules included 10

threshold PCA image intensities and five threshold

ROI pixel counts. For the root node, the model selected

threshold value 104.3 PCA image intensity as the deci-
sion rule for the first data division. This threshold was

very close to the 105 threshold that was used in the

PCA image processing method. Table 4 shows the re-

sults for the decision tree model. The model correctly

classified 89.6% of wholesome (147 out of 164), 92.3%

of inflammatory process (60 out of 65), and 94.4% of

septicemic chickens (151 out of 160). Compared to the

results from using the two image processing algorithms
sequentially (in Table 3), the decision tree performed

better in classifying the chickens into multiple indivi-

dual categories. The decision tree model improved the

classification rate of wholesome chickens by 10.4%,

and resulted in high classification rates for unwholesome



Table 4

Classification accuracy and misclassification matrix for the amounts

and the percentages of chickens classified by the decision tree model

Classification Real conditions

Wholesome Inflammatory

process

Septicemia

Decision

tree

Wholesome 147 2 8

(89.6%) (3.1%) (5.0%)

Inflammatory

process

5 60 1

(3.1%) (92.3%) (0.6%)

Septicemia 12 3 151

(7.3%) (4.6%) (94.4%)
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categories, 94.4% for septicemia and 92.3% for inflam-

matory process. The PCA and ROI image processing

algorithms were developed for targeted classification of

single unwholesome categories but were unable to han-

dle multiple categories well. Even though two methods

could be used sequentially, the significant variation of

image intensity from different chicken conditions may

require more than single threshold from each method
for proper classification. On the contrary, through the

decision tree model using 15 thresholds of decision rules,

the capabilities of both methods were combined to

simultaneously handle both unwholesome categories as

well as the wholesome category.
4. Conclusions

Multispectral images of wholesome, septicemic, and

inflammatory process chickens were collected using a

common-aperture camera with the interference filters at

460, 540, and 700nm. After principal component analy-

sis was applied to the multispectral images, separation of

septicemic chickens was performed by calculating the

average intensity of the first principal component images.
The average intensity value for 95% of the septicemic

chickens was below the threshold value of 105 and thus

those chickens could be correctly differentiated from

wholesome and inflammatory process chickens. For sep-

arating inflammatory process chickens from wholesome

and septicemic chickens, a region of interest was defined

around the lower abdomen in the multispectral chicken

images and spectral features for inflammatory process
were determined. All inflammatory process chickens

were successfully separated by the algorithm�s identifica-
tion of pixels satisfying those spectral feature conditions.

While these two algorithms were each effective at sepa-
rating a single category of unwholesome chickens from

the wholesome and other unwholesome categories, nei-

ther one alone was effective in classifying multiple cate-

gories. A decision tree model was constructed to

classify chickens based on input from both algorithms,

and was able to correctly classify 89.6% of wholesome,
94.4% of septicemic, and 92.3% of inflammatory process

chickens.
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