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Summary table 
Table 6.1: Summary of recommendations for data analysis 

Section/Topic Objective Minimum requirements Evolving issues 

Selecting and use of 
a flux calculation 
method 

Selection and use of 
most appropriate 
calculation method 
for transforming raw 
chamber headspace 
concentration data 
into flux values. 

Method should be 
matched to  
number of sampling 
points collected (see 
Table 6.2, and also 
Chapter 3 - Chamber 
Deployment). 

Criteria for site-specific 
selection of best non-
linear scheme need to be 
developed. 

Estimation of 
emissions using non-
continuous flux data 

Estimate total N2O 
emissions occuring 
over a given time 
period and given 
area of field, using 
flux values from 
discrete sampling 
events and small 
areas.  

Daily fluxes can be 
integrated, using 
trapezoidal integration. 
To improve accuracy of 
cumulative emissions 
estimates, (i) maximise 
sampling frequencies 
and spatial replication 
given available 
resources, (ii) repeat 
experiments over 
multiple years, and (iii) 
consider using spatial or 
temporal gap filling 
procedures. 

Use of automated 
chamber systems (see 
Chapter 5) can help 
minimise temporal 
uncertainties, but better 
estimates of spatial 
variability require a very 
large number of 
chambers, or the use of 
non-chamber (e.g., micro-
metereological) methods. 

Assessment of 
minimum detectable 
flux (MDF) 

Determine the 
minimum flux value 
that can be 
measured for a given 
chamber design and 
analytical instrument 
configuration. 

Determine random 
measurement error 
associated with 
sampling and analysis of 
replicate standards of 
known concentration, 
and use resulting error 
rates to determine 
MDF. 

Different flux calculation 
schemes can differ in 
their MDF, therefore 
selection of flux 
calculation scheme can 
change MDF (see evolving 
issues for section 6.1). 
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Statistical 
considerations for 
analysing inherently 
heterogeneous flux 
data 

Represent central 
tendency and 
variance of flux 
measurements, and 
compare fluxes 
among experimental 
treatments. 

If treatments are 
replicated (at least 
three blocks), the 
variability between 
replicates can be 
assessed by calculating 
means of chambers in 
each replicate; but also 
the variability within the 
replicate by assessing 
the chamber variability. 

To assist with comparison 
of heterogeneous 
chamber datasets, record 
the spatial coverage of 
observations (chamber 
area times the number of 
chambers, relative to the 
plot size: i.e., the plot 
area covered by the 
chambers). Advanced 
techniques are being 
developed to improve 
description of non-
normal and spatially 
heterogeneous data-sets 
and use this to select the 
best method for mean 
estimation. 

Estimation of 
emission factor (EF) 

Estimate the 
proportion or 
percentage of N 
applied as urine, 
manure, or fertiliser 
that is emitted as 
N2O. 

Inclusion of no-N 
control treatment, and 
subtraction of 
cumulative emissions in 
control from cumulative 
emissions in 
experimental 
treatment(s) receiving N 
addition. 

Non-linearity of N2O 
response to N addition 
needs to be assessed in 
different systems (i.e., 
EFs may vary, depending 
on rate of N input). 
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6.1 Selection and use of a flux calculation (FC) method 
The first step in any analysis of chamber N2O data is to calculate the flux from the basic 
chamber concentration versus time data. It is well documented that selection of a FC 
scheme can substantially alter the magnitude of flux estimates, as well as the 
sensitivity to detecting fluxes (Parkin et al. 2012). Levy et al. (2011) concluded that 
selection of a FC method was the largest single source of uncertainty in flux estimates 
from individual chambers.  

The various FC schemes differ in their theoretical basis, numerical requirements and 
potentially, their accuracy and precision. Presently, there is no single clear or perfect 
choice for the ‘best’ FC scheme for all applications, and it is not our intention to make 
a specific recommendation. Our objectives here are instead to summarise the key 
attributes – and potential limitations – of the most widely used FC schemes from both 
practical and theoretical perspectives, so that users can make informed decisions for 
particular applications. We will also make some recommendations on FC scheme 
selection, based on the number of sampling points collected during each deployment 
period (DP). This approach is taken because the number of sampling points largely 
determines the overall suitability of the different schemes. 

6.1.1 Basic considerations 
Non-steady-state chambers rely on the accumulation of the gas of interest (in our case, 
N2O) within an open-bottom chamber placed on the soil surface. The presence of the 
chamber is likely to affect gas diffusion: in theory, accumulation of N2O in the chamber 
immediately suppresses the vertical gradient in N2O concentration, thereby 
suppressing the flux below its pre-deployment value (F0) (Anthony et al. 1995).  

Chamber placement may also create horizontal gradients in gas concentration, as well 
as pressure gradients that may further alter the flux (Mathias et al. 1978; Pedersen et 
al. 2010). The net result of at least the first two of these effects is that they lead to 
non-linearity in the relationship between chamber concentration (C) and time (t) after 
deployment, such that the maximum value of the slope (dC/dt) occurs immediately 
after chamber placement and decreases over time. This alteration in the slope 
complicates the estimation of F0, and selection of a FC scheme. While F0 will be best 
represented by the slope value occurring immediately after chamber placement, 
determining the initial value of dC/dt can be problematic in practice. 
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Table 6.2: Summary of key advantages, disadvantages and recommendations for 
selection of Flux Calculation (FC) Scheme 

Scheme Advantages  Disadvantages Recommendations 

Conventional FC schemes 

LR: 

(Linear 
regression) 

Least sensitive to 
measurement error 
(most precise) of all 
methods. 

Least-biased method 
for convex-upward 
curvature. 

Computationally 
simple. 

Empirical, with no basis in 
diffusion-theory. 

Most biased method for 
convex-downward 
curvature. 

Recommmended option 
with: 

three sampling points, 
or; 

> 3 sampling points, and 
convex-upward 
curvature is observed. 

 

HM 

(Hutchinson 
and Mosier) 

Based on quasi steady-
state diffusion theory. 

Least-biased 
conventional scheme 
for convex-downward 
curvature. 

Restricted to three 
equally-spaced time 
points.  

More sensitive to 
measurement error (less 
precise) than LR and QR. 

 

Not recommended, 
because of high 
imprecision and 
availability of improved 
non-linear methods. 

QR 

(Quadratic 
regression) 

Not limited to three 
equally-spaced 
sampling points. 

More precise than HM 
method. 

Less biased than LR for 
convex-downward 
curvature. 

Empirical, with no basis in 
diffusion-theory. 

More biased for convex-
downward curvature than 
other non-linear methods. 

Recommended option 
with: 

≥ 4 sampling points. 

Advanced FC schemes 

NDFE 

(Non-
steady 
state 
diffusive 
flux 
estimator) 

Based on non-steady 
state, one-dimensional 
diffusion theory, with 
clearly defined physical 
assumptions. 

Provides ‘perfect’ 
calculation of flux at 
time zero, when all 
assumptions are held 
and with no 
measurement error. 

Highly sensitive to 
violation of underlying 
assumptions. 

Can deliver more than one 
flux value for a given data 
set and/or unexpectedly 
high flux values. 

Not easily adapted to 
spreadsheets, nor efficient 
for handling large data 
sets. 

Recommended option 
with: 

≥ 4 sampling points.  
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HMR 

HMR 
method 

Based on same theory 
as HM method, but 
with additional 
consideration of lateral 
(two-dimensional) gas 
transport beneath 
chambers. 

Available as part of 
software package that 
provides confidence 
intervals for estimated 
flux values.  

More sensitive to random 
measurement error (less 
precise) than LR and QR, 
especially at lower flux 
values. 

 

Recommended option 
with: 

 ≥4 sampling points. 

CBC 

(chamber 
bias 
correction 
method) 

Same theoretical basis 
as NDFE method. 

Delivers a single flux 
value, avoids 
unexpectedly high flux 
values given by NDFE 
and less sensitive to 
violation of 
assumptions than 
NDFE. 

Can be combined with 
QR or LR methods. 

Requires additional soil 
data, which may introduce 
error. 

Requires multiple 
calculations (but can be 
done in spreadsheet 
format). 

 

Recommended option 
when accurate soil bulk 
density and water 
content data are 
available, with: 

≥ 3 sampling points 
when combined with LR 
or, 

≥ 4 sampling points 
combined with LR or 
QR. 

6.1.2 Conventional FC schemes 
We refer to linear regression (LR), the method of Hutchinson and Mosier (1981) (HM), 
and quadratic regression (QR) (Wagner et al. 1997), as ‘conventional’ methods, 
because they have traditionally been the most commonly used across the world, and 
also because all three methods allow for direct calculation of flux using the equation: 

 𝐹 = 𝐻 𝑑𝐶
𝑑𝑡

 (1) 

where F is flux (with units4 of M L-2 T-1), H (L3 gas L-2 soil) is the ratio of the internal 
chamber volume to surface area in contact with the soil – commonly referred to as 
chamber ‘height’ (with units simplified to L) – C is the N2O concentration in the 
chamber (M L-3 gas), and t is time (T). The designation dC/dt is used to represent the 
time rate of change in C (M L-3 gas T-1). The LR, QR, and HM methods each aim to 
determine dC/dt for use in Eq. [1]. 

6.1.2.1 Linear regression 
About 75% of studies reporting NSS-based N2O fluxes published between 2005 and 
2007 used LR as the FC scheme (Rochette & Eriksen-Hamel 2008). The LR approach 

                                                       
4 Unit dimensions are indicated by M for mass, L for length, and T for time. Where appropriate, dimensions are also 
specified with respect to the quantity described by the unit: i.e., soil or gas. 
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simply uses the slope obtained from least-squares linear regression of C versus t to 
estimate dC/dt for use in Eq. [1]. Obviously, applying LR to inherently non-linear data, 
as described above, will in theory tend to underestimate F0, and this has been shown 
in several studies (e.g. Matthias et al. 1978). While this is universally recognised, LR is 
nevertheless widely used because of its practical advantages. It is computationally 
simple, and applicable to low numbers of chamber observations (e.g. n=2). However, 
while using two time points per chamber deployment may be attractive logistically, it 
does not allow for any evaluation of non-linearity, nor the statistical confidence of the 
estimate.  

Some researchers have justified the use of LR and/or two sampling points, based on 
preliminary measurements showing a high degree of linearity in chamber data for a 
particular site. However, diffusion theory predicts that: (i) even relatively small 
deviations from linearity can result in substantially biased LR-based flux estimates; and 
(ii) the extent of non-linearity in chamber data can vary considerably among 
measurements, depending on soil physical properties (e.g. water content), which can 
range widely over time and space (Livingston et al. 2006; Venterea and Baker 2008).   

For example, Conen and Smith (2000) used numerical modelling to show that when LR 
was applied to theoretical chamber data exhibiting r2 values greater than 0.997, F0 was 
underestimated by more than 25%, even at a relatively low value of soil air-filled 
porosity (i.e., 20%). Venterea and Parkin (2012) showed how increasing air-filled 
porosity leads – in theory – to increased non-linearity in chamber data and 
correspondingly increased underestimation of F0, due to increasing accumulation of 
gas within the soil pores instead of the chamber. Conen and Smith (2000) refer to this 
phenomenon as N2O “storage” within the soil profile.  

Venterea and Parkin (2012) and Venterea and Baker (2008) demonstrated that such 
soil property effects on flux underestimation imply that LR (and potentially other FC 
schemes) will be more or less accurate at different times and/or in different places 
during a field experiment, thereby leading to biases that could confound the results. 
Nevertheless, compared with the QR and HM schemes, LR-based estimates are least 
sensitive to random variations in chamber N2O concentrations resulting from sampling 
techniques and performance of analytical instruments: in other words, from variations 
arising from ‘measurement error’ (Venterea et al. 2009). Similarly, LR has been shown 
to have the lowest method detection limit, compared with other schemes (Parkin et al. 
2012).  

In this sense, LR can be said to have greater precision compared with other schemes, 
while at the same time having the greatest expected bias. Furthermore, LR’s precision 
relative to other FC methods is expected to increase as the number of sampling points 
(n) collected per DP decreases (Venterea et al. 2009). This fact, combined with the lack 
of statistical robustness of non-linear FC methods when n < 4 (see sections below), 
leads us to recommend that LR be used when n = 3.  

In addition, under certain circumstances, precision might be considered of equal or 
perhaps greater importance than bias. For example, Venterea et al. (2009) showed 
that LR-based flux estimates can be more statistically robust for detecting differences 



102 | NITROUS OXIDE CHAMBER METHODOLOGY GUIDELINES – Version 1 

 

in fluxes among experimental treatments, by reducing the additional variance 
contributed by measurement error.  

The advantage of LR in this regard will depend on the magnitude of the flux in relation 
to measurement error, and to other factors which may be difficult to predict (Venterea 
et al. 2009). One option is to calculate fluxes using both LR and a non-linear scheme, 
then determine if means comparisons or statistical relationships using LR-based flux 
estimates are more robust. Of course, in this case, it must be kept in mind that the LR-
based estimates will more greatly underestimate F0 than a non-linear scheme. 

Another situation where LR may be the only reasonable option is when a chosen non-
linear scheme ‘fails’ when applied to a particular set of chamber data. All other FC 
schemes essentially assume that chamber data will have decreasing slope over time. In 
practice, measurement error and/or other factors (e.g. temperature or pressure 
variations) may result in data that display near-perfect linearity or curvature that is 
‘opposite’ to the expected pattern (i.e., increasing slope over time). In the latter case, 
non-linear FC schemes tend to produce a flux estimate less than that produced by LR, 
which is an unreasonable outcome.  

Thus, when using methods other than LR, it is advisable to evaluate each individual 
data set for method ‘failure’, as discussed below. In these cases, use LR, or perhaps 
remove any clearly anomalous data points responsible for the method failure.  

6.1.2.2 The HM method 
The non-linear FC scheme, first proposed by Hutchinson and Mosier (1981), is very 
commonly used in N2O work. However, the theoretical basis and underlying 
assumptions of the HM model may not be as widely understood. The assumptions are 
that: (i) the N2O gas concentration at some depth d in the soil is a constant (Cd) during 
the chamber deployment period; (ii) the physical properties (e.g., water content, bulk 
density) that control soil-gas diffusion are uniform in the soil layer above the depth d, 
and (iii) the flux of gas into the chamber is controlled by one-dimensional (1D) vertical 
diffusion, proportional to a linear soil-gas concentration gradient (dC/dt) between d 
and the soil surface.  

With these assumptions, the rate of change in chamber N2O concentration (C) can be 
described by a simple ordinary differential equation given by: 

 
𝑑𝐶
𝑑𝑡

= 𝑘(𝐶𝑑 − 𝐶) (2) 

where = 𝐷
𝐻𝑑

 , and D is the soil-gas diffusion coefficient (L3 gas L-1 soil T-1) in the soil 

layer above d. It is mathematically straightforward to find a general solution to Eq. [2] 
that could be used to estimate the flux at time zero, but this would result in a FC 
scheme requiring non-linear regression, therefore preventing the direct use of Eq. [1]. 
To avoid this, Hutchinson and Mosier (1981) limited their application to the case where 
the chamber is sampled immediately upon deployment, and then again at two equally-
spaced time intervals. In this case, dC/dt at t=0 can be determined from: 

  (3) 
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where C0, C1, and C2 are the chamber N2O gas concentrations measured immediately 
after chamber deployment, after the first interval, and after the second interval, 
respectively, Δt is the time interval between each sample, and . In this case, 

F can be calculated directly from Eqs. [1] and [3].  

In addition to being restricted to the case of three equally-spaced time points, Eq. [3] 
will fail when α=1 (F = 0) and when α ≤ 0 (ln (α) is not defined). Also, when 0 ≤ α ≤ 1, 
unexpected curvature will occur as discussed above. Thus, combining these three 
cases, reasonable model failure criteria for the HM method would be to exclude all 
cases where α ≤ 1, in which cases applying LR instead may be more reasonable 
(Venterea et al. 2009).  

The main advantage of the HM method is that it has some degree of theoretical basis: 
it is computationally straightforward, and allows for explicit use of Eq. [1]. On the 
other hand: (i) compared with LR and QR, the HM method has been shown to be most 
sensitive to measurement error, and therefore less precise than these other methods; 
(ii) HM cannot be used with > 3 sampling points, unless an averaging procedure is used 
– for example, by using four equally-spaced time points and using the average of the 
middle two time points as the second point – and (iii) HM cannot generate statistical 
data (e.g., confidence intervals, r2 values). For these reasons, the HM method is not 
recommended. 

6.1.2.3 Quadratic regression 
The quadratic regression (QR) method proposed by Wagner et al. (1997) assumes that 
chamber gas concentration will change as a function of time, according to:  

 𝐶(𝑡) = 𝑎𝑡2 + 𝑏𝑡 + 𝑐 (4) 

where a, b, and c are regression coefficients. Because the first derivative of Eq. [4] at 
t=0 is equal to b, the flux at time zero (F0) can be estimated by substitution of b for 
dC/dt in Eq. [1]. Like LR, QR is empirical, with no physical basis. The QR method can be 
applied without necessarily using non-linear regression; for example, the multiple 
regression (LINEST) function in Microsoft Excel can be applied in spreadsheets by 
treating t and t2 as separate independent variables.  

The QR method can be used with more than three sampling points, and – in contrast to 
the original HM method – with any (e.g. non-uniform) sampling interval. Because Eq. 
[4] contains three regression coefficients, more than three sampling points are 
recommended when using QR. When more than three sampling points are used, the 
LINEST function can be used to return model statistics, including R2 and the standard 
error of the estimate of b. In contrast, the original HM model allows for only three 
equidistant sampling points; therefore model statistics cannot be determined 
(limitations in number and distribution of samples are overcome in the HMR model, 
see section 6.1.3.3).  

Because Eq. [4] can be fitted to data displaying a wide range of non-linear patterns, it 
is recommended that model failure criteria be used when applying the QR method. 
Evaluation of model failure can be facilitated by using the value of the second 
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derivative of Eq. [4], which is equal to 2a. Unexpected data curvature will occur 
whenever a and b have the same sign, or in other words, whenever ab> 0. QR is more 
flexible in terms of sampling regime, and less sensitive to measurement error, 
compared with HM (Venterea et al. 2009). Theoretical analysis has indicated that QR 
produces more accurate flux estimates than LR, but less accurate than HM in the 
absence of measurement error (Livingston et al. 2006; Venterea et al. 2009). 

6.1.3 Advanced FC schemes 
We apply the term ‘advanced’ to FC schemes which have a more rigorous or extended 
theoretical basis than conventional schemes, and which require additional numerical 
computation beyond direct calculation using Eq. [1]. Included in this category are the 
NDFE (Livingston et al. 2006), CBC (Venterea 2010), and the extended HM/HMR 
methods (Pedersen et al. 2010). Each of these schemes has its advantages and 
disadvantages, and currently, neither can be recommended as better overall. We do, 
however, recommend that when ≥ four points are sampled, a non-linear scheme be 
used: the recommended options therefore include LR with CBC, QR with or without 
CBC, NDFE alone, or HMR alone. The discussion below is provided so that users can 
make informed decisions about FC scheme selection.  

6.1.3.1 The NDFE method 
The non-steady state diffusive flux estimator (NDFE) scheme developed by Livingston 
et al. (2006) is derived from a more rigorous theoretical basis than any other scheme. 
The major advance of the NDFE method is that it derived a useful solution to a partial 
differential equation (PDE) describing soil-gas production, diffusion, and accumulation 
in a chamber under transient (non-steady state) conditions. Furthermore, it is not 
confined to N2O production occurring in a specific soil layer, or to diffusion driven by 
linear concentration gradients. A precise analytical solution to the PDE was obtained 
by Livingston et al. (2006), describing the chamber gas concentration (C) as a function 
of time (t) as follows: 

. (5) 

Livingston et al. (2006) also published software (available at 
http://arsagsoftware.ars.usda.gov) which performs non-linear regression analysis and 
returns a value for F0. Since the model (Eq. [5]) has a total of three regression 
parameters (F0, Co, and τ), a minimum of four sampling points is recommended, so as 
to obtain statistically feasible estimates.  

The NDFE method is appealing, because it provides a theoretical basis for calculating 
F0, but it has some practical and theoretical limitations. The regression solver is not 
easily adapted to spreadsheets, nor efficient for handling large data sets. Also, 
different runs of the solver will frequently return different values of F0 for the same set 
of chamber data, and in some cases, produce F0 values much greater than expected, or 
determined using other methods (Kutzbach et al. 2007; Venterea 2010). In these cases, 
it may not be clear which F0 values are ‘true’, and which values result from violation of 
one or more of the assumptions underlying Eq. [5].  

http://arsagsoftware.ars.usda.gov/
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One of these assumptions is that the soil is vertically uniform, with regard to water 
content and bulk density. Venterea and Baker (2008) showed that the NDFE can 
underestimate – and in some cases overestimate – F0 when applied to soil profiles 
having realistically non-uniform physical properties. Another assumption behind Eq. [5] 
is that chamber placement does not cause gas to diffuse horizontally beneath the 
chamber, which would further alter the curvature of the C versus t data. In other 
words, the method assumes only 1D diffusion, and therefore predicts in principle that 
chamber gas concentration will increase ad infinitum.  

The validity of the assumption of no horizontal diffusion depends on the insertion 
depth of the chamber base walls into the soil, combined with the soil air-filled 
porosity, and the duration of chamber deployment. Hutchinson and Livingston (2001; 
2002) provided criteria for determining the minimum insertion depth required to 
minimise this effect.  

Livingston et al. (2006) numerically investigated the sensitivity of the NDFE model to 
chamber insertion depth, and found that the use of insertion depths less than those 
recommended by Hutchinson and Livingston (2001; 2002) resulted in NDFE 
overestimating F0. Kutzbach et al. (2007) provided some empirical support for the 
potential importance of horizontal diffusion effects on NDFE-based flux estimates, and 
its inadequacy under some circumstances, such as shallow chamber insertion depths in 
porous soils. The extended HM model (section 6.1.3.3) attempts to account for 
additional non-linear curvature due to horizontal diffusion (Pedersen et al. 2010).  

6.1.3.2 The CBC method 
The chamber bias correction (CBC) method developed by Venterea (2010) utilises the 
same fundamental theory as Livingston et al. (2006), but applies it in a way that avoids 
non-linear regression. The CBC method is applied by first determining the flux using a 
conventional FC scheme (LR, HM, or QR). The initial flux estimate is then multiplied by 
a theoretically-based correction factor, which is calculated from soil physical 
properties (bulk density, water content, clay content, and temperature), chamber 
height (H) and total chamber deployment period (DP).  

The CBC method utilises the fact that the τ term in Eq. [5] has physical meaning related 
to soil physical properties and H, and that the error of the initial flux estimate is 

predictably related to the quantity , Venterea (2010) describes the theoretical 

basis and mechanics for calculation of correction factors. An example spreadsheet is at 
http://www.ars.usda.gov/pandp/people/people.htm?personid=31831. Advantages of 
the CBC method are that it preserves the theoretical basis of the NDFE method, but 
overcomes some of its limitations. For example, it attempts to overcome the 
assumption of the NDFE method that water content and bulk density are vertically 
uniform by using soil physical properties averaged over the upper 10 cm of the soil 
profile. The CBC method avoids the need for a non-linear regression solver, and 
therefore delivers a single flux value, calculated using a conventional spreadsheet. It 
avoids generation of extraneously high flux estimates that are sometimes observed 
with the NDFE method (Venterea 2010; 2013).  

http://www.ars.usda.gov/pandp/people/people.htm?personid=31831
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On the other hand, the method requires additional soil property data. While these 
data are commonly available in many studies because of their influence over N2O 
production, these additional measurements necessarily introduce additional sources of 
potential error. The sensitivity of CBC-based flux estimates to errors in soil property 
measurements has been recently quantified (Venterea and Parkin, manuscript in 
preparation). 

6.1.3.3 The extended HM model and the HMR method 
Pedersen et al. (2010) developed the HMR method, which builds on the original 
method of Hutchinson and Mosier (1981) but with expanded applicability. It has seen 
increasing application in some studies (e.g. Petersen et al. 2012). The HMR method is 
actually a comprehensive flux-calculation software available as an add-on package to 
be used with the R statistical programme (available at 
http://cran.opensourceresources.org/). The HMR method includes within it a FC 
scheme that expands the theoretical basis of the HM model to account for lateral (2D) 
gas diffusion induced by chamber placement and/or gas leaks from an imperfectly 
sealed chamber. This is accomplished by modifying the governing equation initially 
given by Eq. [2] as follows: 

  (6) 

where the term γ(C - Co) accounts for lateral diffusion and chamber leaks. Eq. [6] can 
be re-arranged in the form of Eq. [2] with different values of Cd and k, but the same 
initial flux, which means that the flux estimate is independent of lateral diffusion and 
chamber leaks, as modelled by Eq. [6]. HMR can fit the HM model by non-linear 
regression to concentration measurements from three or more sampling time-points 
and arbitrary sampling intervals.  

Further, HMR uses a one-parameter criterion which facilitates the search for the 
optimal fit: the HMR estimation procedure restricts the parameter space to ensure 
that estimated values are valid HM model parameters. The HM model (Eq. [2]) has the 
linear model (LR) and the constant model (no flux) as limiting cases (LR: k → 0; No flux: 
k → ∞). Therefore, when HMR detects that the criterion function is ever improving for 
k, approaching either zero or infinity, it recommends data to be analysed by LR, or no 
analysis, respectively. HMR leaves the choice of analysis to the user, and provides 
diagnostic plots to support a qualified decision.  

For all supported analyses, HMR provides p-values 95% confidence intervals for the 
estimated flux, based on standard asymptotic statistical theory. The principles of the 
HMR estimation and classification procedure could also be applied to the NDFE model, 
which also has the linear and the constant model as limiting cases (LR: τ → ∞; No flux: 
τ → 0). As mentioned above, some studies have shown that, in practice, the NDFE 
model often does not fit measured chamber concentrations well, possibly due to 
violations of the NDFE assumption of no horizontal gas transport or other assumptions. 

Analysing data with low signal-to-noise ratio is particularly challenging with non-linear 
FC schemes. There is always a risk that chamber concentrations by chance, even at 

http://cran.opensourceresources.org/
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sites with no flux, will follow a clear non-linear pattern, which may fool the HMR 
procedure to erroneously estimate a large and seemingly statistically significant flux. 
The variation of chamber measurements must be evaluated against the site-specific 
natural variation of the trace gas concentration (e.g., derived from repeated pre-
deployment sampling), but this is not presently part of the HMR method. 

6.1.4 Criteria for selecting FC scheme for particular applications 
Which is the best FC method? As described above, several criteria must be considered 
when selecting an analysis technique to apply to a given data set. Several studies have 
evaluated some of the aforementioned methods with regard to the bias (accuracy) 
associated with the calculated flux estimate (Livingston et al. 2006; Venterea et al. 
2009; Venterea 2010; Pedersen et al. 2010; Venterea, 2013).  

However, in addition to bias, the variance associated with the calculation method must 
also be considered. Every analytical technique for gas measurement has an associated 
error (see Chapter 4, section 4.4 - 4.7). In the case of gas chromatography, the 
precision (coefficient of variation) of the gas measurements is often in the range of 1 
to 6% when small (0.2 to 1.0 ml) gas samples are used. The error associated with gas 
measurement (as well as other sampling errors) can result in the occurrence of ‘noisy 
data’ (Anthony et al. 1995), and this ‘noise’ – induced by sampling and analytical 
variability – can introduce a variance component to the flux estimation method. Thus, 
the variance of the flux estimation method should also be considered, as well as its 
bias. 

A statistical analysis by Venterea et al. (2009) demonstrated clear trade-offs between 
bias and variance in selecting a flux-calculation scheme, with linear regression having 
greater bias, but less variance compared with the HM and Quad methods. When an 
estimation method has both bias and a variance component, the appropriate selection 
criterion is the Mean Square Error (MSE), which combines the bias and variance (Eq. 7) 
(DeGroot 1986): 

 MSE = Variance + Bias2 (7) 

Parkin and Venterea (manuscript in preparation) investigated these issues further, 
using Monte Carlo simulation to evaluate the bias, variance, and MSE of linear 
regression, the HM method, and the Quad method when applied to data sets of three 
or four points, with chamber deployment times of 0.5 h, 0.75 h and 1.0 hour, and 
different degrees of data curvi-linearity. Monte Carlo simulations were performed by 
constructing simulated N2O chamber data, using the method described by Venterea et 
al. (2009). This analysis was applied over a range of analytical precisions (1% to 6%), 
and showed there is no simple answer to the question: “Which flux calculation method 
is the best?”  

The MSE of a given flux calculation method is dependent upon three factors: i) the 
magnitude of the underlying flux; ii) the degree of data curvi-linearity and iii) the 
analytical precision. The reader is referred to Parkin and Venterea (2010) for 
preliminary results of this analysis. Additional analysis is under way (Parkin and 
Venterea, manuscript in preparation). It is quite possible that analysis of N2O flux 
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results from complex environments – where fluxes may range over several orders of 
magnitude and display different types and degrees of non-linear curvature – will 
require a combination of FC methods to obtain the best overall precision and minimum 
bias. The HMR software (section 6.1.3.3) enables the analyst to choose between LR 
and a non-linear model (or zero flux) for each individual data set, based on scatter 
plots. This approach could be extended by more stringent criteria to guide the decision 
on flux calculation method. 

6.2 Estimation of cumulative emissions using non-continuous 
flux data 

Accurately determining N2O  fluxes from agricultural soils is a major challenge, due to 
the large spatial and temporal variability of the microbial processes that generate 
them, and their interaction with environmental variables. Long-term studies are 
recommended, as fluxes vary from year to year (Velthof and Oenema 1995): unusual 
weather in one year will affect subsequent emissions that year, and thereafter. 

6.2.1 Accounting for spatial variability 
The spatial variability in N2O emissions (as discussed in Chapter 3) means that large 
coefficients of variation are often encountered in flux data derived from static 
chamber measurements: e.g., 50-100% for CH4 (Whalen and Reeburgh 1988); 13-57% 
(Yamulki et al. 1995) and 31-168% for N2O (Matthias et al.1978). Calculation of mean 
fluxes from a replicated experiment must therefore give a representative value of the 
spatial variability of the plot in question. This spatial variability has been considered 
log-normal at all scales (Oenema et al. 1997), although normal distributions have also 
been reported, in which case arithmetic means are used (Petersen 1999).  

It has been suggested that the type of distribution can change at different times of the 
year (Tiedje et al. 1989). Normal distribution would be expected when the soil is 
wetter and more homogeneous. In the summer, when the soil is dry, hot spots are 
expected, producing a log-normal behaviour (Parkin 1987; Tiedje et al. 1989). A third 
type of distribution has been reported, in clusters, which shows two or more groups of 
data (see Chapter 3, section on Strategic Sampling). In this case, a mean per cluster is 
calculated, and these means are then averaged to give the plot mean. Cardenas et al. 
(2010) observed that the mean of the cluster means was biased by large values when 
these were a minority in the data set and noted that the bias could have been due to 
different numbers of data points in each cluster. 

Another suggested method is the Kriging technique, in which gaps in data in a field 
(spatial gaps, areas of the field with no measurements) are filled in, but it relies on 
spatial autocorrelation between measured fluxes (Folorunso & Rolston 1984). It is 
however, common to have only few chambers (fewer than 10) to measure fluxes from 
a particular treatment at field scale, restricting the possibility of attributing the 
relevant distribution (Velthof & Oenema 1995). In this case, normal distribution is 
usually assumed and arithmetic means determined (Cardenas et al. 2010). 
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6.2.2 Accounting for temporal variability 
As discussed in Chapter 5, the more frequently measurements are made, the more 
accurate the integrated seasonal/yearly cumulative flux estimate will be (Smith & 
Doobie 2001; Parkin 2008). When estimating daily and cumulative fluxes, certain 
components of temporal variability must be considered, including diurnal variations, 
and variations from perturbation, such as tillage, fertility, irrigation, rainfall and  
thawing. To account for diurnal variability, it is recommended that fluxes are measured 
at times of the day that more closely correspond to the daily average temperature 
(mid-morning, early evening). Q10 temperature correction may be used to adjust daily 
flux rates to the average daily temperature, but caution is warranted.  

The temperature correction procedure assumes that temperature variations are the 
primary factor driving diurnal flux variations – an assumption that may not be 
universally true. Selection of both the appropriate Q10 factor and soil temperature 
(depth) are critical. The time lag between gas production in the soil profile, and gas flux 
from the soil surface, will dictate the appropriate soil temperature to use in 
performing the Q10 flux correction. Biological reaction rates increase exponentially 
with temperature between 15 – 35°C, and Q10 values found in the literature range 
between 1.6 for conditions conducive to nitrification (Smith et al. 1998), to 15 in heavy 
soils under wet conditions conducive to denitrification (Dobbie et al. 1999; Smith et al. 
1998).  

Temperature also affects the solubility of gases in water, as well as their rates of 
diffusion in the soil profile, affecting N2O as well as O2 diffusion. These in turn affect 
anaerobicity, suggesting a complex effect of temperature on fluxes. The appropriate 
Q10 factor, then, must be carefully determined when using a temperature correction.  

Frequent sampling is recommended to account for temporal variation caused by 
perturbation, both before and after the events (Chapter 3). To calculate cumulative 
fluxes, the daily fluxes can then be integrated, using the trapezoidal integration 
method. However, this method could overestimate fluxes, especially if measurements 
are carried out more intensively around events (fertiliser application, rainfall) or if 
measurements are infrequent, especially around the time of larger fluxes.  

Therefore, there may be a need to fill in the gaps when there are no measurements 
taken. This could be done by extrapolating the last pre-perturbation flux measurement 
over time, until just before the perturbation. Emissions between events (background 
fluxes) can also be used to calculate mean daily background fluxes, then extrapolated 
to the year by multiplying by the number of days not affected by events. However, this 
can underestimate emissions, as changes in soil mineral N (especially when organic 
carbon is high, or when crop residues are incorporated) could provide the N necessary 
for the production of N2O at those times when emissions are not expected to be great 
(Dobbie and Smith 2001; Webster and Goulding 2006). Empirical or process-based 
models can also be used to estimate fluxes on those times and locations where 
measurements were not carried out. 
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6.3 Assessment of minimum detectable flux (MDF) 
Past efforts to assess the minimum detection limits of soil gas emissions have focused 
on determining goodness-of-fit of regression procedures. For fluxes determined by 
linear regression, a t-test of the slope of the regression line can be used to assess if the 
flux is significantly different from zero (Livingston & Hutchinson 1995; Rochette et al. 
2004). Since standard errors of the model parameters obtained in the Quad and HMR 
methods can also be calculated, a t-test of significance can be applied to determine the 
significance of fluxes derived by these methods.  

The HM flux procedure does not allow for calculation of an associated standard error 
directly. However, the stochastic application of the HM procedure developed by 
Pedersen et al. (2001) does provide flux estimates with associated confidence limits, 
enabling the determination of regression significance. Typically, goodness-of-fit tests 
are applied at an α level of 0.05. However, in computations of trace gas fluxes with 
three or four data points, degrees of freedom will be small (degrees of freedom = 
number of time points, minus number of model parameters). When the number of 
degrees of freedom is small, the power to detect significance is low, thus the type II5 
error rate will be high. In addition, whereas goodness-of-fit tests can determine 
whether a given flux is significantly different from zero, they do not provide an 
indication of the magnitude of the minimum detectable flux.  

Using Monte Carlo sampling, Parkin et al. (2012) developed a method to determine the 
minimum detection limits for several different regression models when three or four 
data points are available. This method allows the calculation of the flux minimum 
detection limit if the chamber deployment time (DT) and sampling/analytical precision 
(coefficient of variation) are known (see Appendix 3 for an example of this calculation).  

6.4 Statistical considerations for analysing inherently 
heterogeneous flux data 

6.4.1 Assessment of normality and transformation 
The high variability of N2O emissions often manifests as positively skewed 
distributions. These in turn arise because many environmental variables cannot take 
on negative values, and are therefore constrained by zero. Before applying any 
standard analysis of variance procedures, several assumptions must be established 
concerning the underlying error structure of the data. Among these is the assumption 
of normality. The effects of violations of the assumption of normality on the efficacy of 
parametric statistical tests, such as the t-test, have long been known (Hey, 1938; 
Cochran, 1947).  

Non-normality will influence the ability of a statistical test to perform at the stated a-
level – an effect Cochran (1947) refers to as the validity of the test. Non-normality also 
affects the power of a statistical test to detect differences when real differences in the 
data actually exist. Two common procedures have been recommended for when data 

                                                       
5 Failure to reject false null hypothesis 
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are not normally distributed: (i) transform for normality, or (ii) apply nonparametric 
statistical methods (Snedecor and Cochran 1967).  

These two approaches, though, have consequences for the inference base – 
specifically with regard to the estimand – which are not typically considered. This 
discussion will focus on log-normally distributed data, and present information on (i) 
optimal methods for computing the mean and variance for a log-normally distributed 
variable, and (ii) guidelines for hypothesis testing. 

6.4.2 Estimating the mean and variance of log-normally distributed data 
In most environmental studies, it is impossible to sample the entire population of the 
variable of interest. Thus, we are forced to estimate the parameters of the underlying 
population – such as the mean and variance – from sample data. Estimating the mean 
and variance for normally distributed data is straightforward. But sample data is often 
positively skewed, and is better approximated by the two-parameter log-normal 
distribution. When log-normality exists, statistical methods of analysing Gaussian data 
are not ideal: there are better techniques for estimating the population mean, median, 
and variance from sample data (Parkin and Robinson 1992; Parkin et al. 1988).  

These alternatives yield unbiased parameter estimates, and have minimum variance. 
In addition, exact methods for computing confidence limits of the mean and median 
are known (Parkin et al. 1990). Three methods have typically been applied to estimate 
the mean and variance of log-normally distributed data. These are the method of 
moments (MM), the maximum likelihood method (ML) and the uniformly minimum 
variance unbiased estimator (UMVUE) method.  

6.4.2.1 Method of Moments estimators (MM) 
Method of Moments (MM) estimators are computed according to the standard 
methods found in common statistical texts (the mean is the arithmetic average of the 
sample values, and the variance is the average squared deviation from the mean): 

  (8) 

  (9) 

 where xi = the untransformed ith observation, n = the number of observations, m = 
the estimate of the population mean, and s2 = the estimate of the population variance.  

The MM estimators are unbiased, irrespective of the underlying distribution. However, 
they have higher associated variance than the UMVU estimators when applied to log-
normal data, and so are less efficient.  

6.4.2.2 Maximum Likelihood estimators (ML) 
Maximum Likelihood (ML) estimators employ the use of log-transformed sample data 
and compute the mean according to the asymptotic formulae shown below. 

  (10) 
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  (11)  

where: 

  (12) 

and: 

  (13) 

In some literature, these ML estimators have been recommended when the sample 
data conforms to a log-normal distribution. However, it has been shown that these 
estimators are biased, and inefficient for small sample sizes (n<1000). They are 
therefore not recommended (Parkin et al. 1988). 

6.4.2.3 Uniformly Minimum Variance Unbiased estimators (UMVU) 
The Uniformly Minimum Variance Unbiased Estimators (UMVUE) were developed 
independently by Finney (1941) and Sichel (1952), and have been typically applied to 
the analysis of geological data (Krige 1981; Koch & Link 1970). Estimators of the 
population mean (m) and variance (s2) are given by Eqs. [14] and [15], respectively. 

  (14) 

  (15) 

where ϕ = the power series, described in Eq. 16: 

 (16) 

Thus, to calculate the UMVU estimate of the sample mean (Eq. 14), the term (σ2/2) 
would be substituted for ‘t’ in the power series (Eq. 16). To estimate the UMVU 
variance (Eq. 15), the power series would have to be solved twice; once with the term 
(2σ2) substituted for ‘t’ in Eq. 16 and once with the term  substituted for ‘t’. It 

is recommended that the power series (ϕ) be evaluated until the final term accounts 
for <1% of the sum of the preceding terms. This usually requires the calculation of six 
to ten terms. 

The application of these three techniques (MM, ML and UMVU) to estimate the mean 
and variance depends on sample size, and the variability of the underlying population 
(as indicated by the sample coefficient of variation). Recommendations for application 
of these techniques are given in Table 6.3. Details from evaluations of these methods 
are presented by Parkin et al. (1988). 
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Table 6.3: Summary of recommended methods for estimating the mean and variance 
of log-normally distributed populations for three sample coefficients of variation 
(CV) by three sampling intensity ranges. When more than one method is 
recommended, the methods are presented in order of most, to least, preferable. 
MM: method of moments, ML: the maximum likelihood method, UMVUE: the 
uniformly minimum variance unbiased estimator method 

Sample CV Sample Size (n) Recommended Method 

 Mean Variance 

50 % 4 – 20 MM, UMVU MM, UMVU 

20 – 40 MM, UMVU UMVU 

40 – 100 MM, UMVU UMVU, ML 

100% 4 – 20 UMVU, MM UMVU 

 20 – 40 UMVU, MM UMVU 

 40 – 100 UMVU, MM UMVU 

200 % 4 – 20 UMVU UMVU 

 20 – 40 UMVU UMVU 

 40 – 100 UMVU, ML UMVU 

 

6.4.2.4 Confidence intervals about the mean 
Historically, there has been some confusion surrounding the calculation of confidence 
limits about the mean of a log-normally distributed variable. The main difficulty with 
confidence limit calculations is that the mean and the variance of the log-normally 
distributed variable are not independent. As a result, there are several recommended 
ways to calculate confidence intervals. One study evaluated several methods using 
Monte Carlo simulation (Parkin et al. 1990), and found that a method developed by 
Land (1973) yields exact confidence limits: the upper and lower limits perform at the 
stated probability level. 

6.4.3 Hypothesis testing 

6.4.3.1 Mean versus median 
As pointed out earlier, the mean and median of a log-normal distribution have two 
different values. The choice of the appropriate location parameter is critical in 
hypothesis testing, as it can affect the conclusions drawn from the data. There are few 
guidelines regarding the validity of focusing on the mean or median as a summary 
statistic, or on the sensitivities of statistical tests to differences in the mean versus the 
median. Often, the median is chosen over the mean because of its resistance to the 
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extreme values often observed with non-normal distributions. However, because the 
mean and median convey different information about the population, this rationale is 
not always valid.  

These are the two most frequently used location parameters to summarise log-normal 
data. It should be recognised that the mean and median of a log-normal distribution 
actually convey different information about the distribution. Both of these location 
parameters are indicators of central tendency of the population. The mean is the 
centre of mass of the distribution, while the median is the centre of probability of the 
distribution.  

In some cases, the median may be a more appropriate indicator of central tendency 
(Hirano et al. 1982; Loper et al. 1984; Landwehr 1978); in other situations, the mean is 
more appropriate (Parkin 1991; Gilbert 1987, p 45-57). The choice of the mean or the 
median as the summary statistic depends upon the objectives of the experiment, and 
the nature of the sampling. This choice between the mean and median will dictate the 
appropriateness of a transformation for normality, and the proper statistical test to 
use. A major consideration is the influence of sample volume effects on the median. 

6.4.3.2 Sample volume effects on the median  
The central limit theorem predicts that, regardless of the form of the underlying 
population, the distribution of sample means approaches normality as the number of 
samples used in computing the means increases. An illustration of this effect is given 
by Parkin and Robinson (1992). In natural systems, if the variable of interest is 
randomly dispersed, collecting large samples has the same effect as bulking or pooling 
of smaller samples. Thus, for a variable that exhibits a skewed distribution, the 
distribution becomes more symmetrical as sample volume increases, and the value of 
the median increases (approaches the value of the distribution mean). This effect was 
observed for bacterial populations in the rhizosphere (Loper et al. 1984). The 
dependence of the median value on the sample volume is a major factor limiting the 
use of the median (and associated statistical tests of the median) as a summary 
parameter.  

6.4.3.3 The Median as the Location Parameter of Choice 
When is it appropriate to use the median? A classical example illustrating a valid use of 
the median as a summary parameter exists in the field of economics. Personal income 
data are skewed, and have been approximated by a log-normal distribution. The 
median makes a good summary parameter for income data because the samples 
themselves  – the individuals – have identity and significance.  

The median income level allows individuals to gauge themselves against other 
individuals (samples) in the population. In environmental sciences, an excellent 
example of the appropriate use of the median is illustrated in a study of ice nucleation 
bacteria on plant leaves (Hirano et al. 1982). These investigators analysed 24 to 36 
individual leaves, and found that the bacterial distributions on the leaves were log-
normally distributed. According to the criterion statement given above, the 
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appropriate use of the median requires that the samples have identity and 
significance.  

The significance of considering the bacterial populations on the individual plant leaves 
is given by Hirano et al. (1982) in their statement, “The quantitative variability of 
epiphytic bacterial populations on individual leaves may be an expression of the 
uniqueness of each leaf as an ecosystem, with one or more environmental or biological 
characteristics significantly different from that of the neighbouring leaf.” They 
continue: “Since foliar plant diseases occur on individual leaves within a given plant 
canopy, the mean pathogen population for that canopy is of less importance than the 
pathogenic population on each leaf.”  

For trace gas flux, the chambers can vary in size, and typically have no identity or 
significance. The median is not, therefore, the location parameter of choice, so 
normalising transformations and statistical tests on normalised data should be 
avoided.  

6.4.3.4 The mean as the location parameter of choice 
Often in soil science, what is desired is an estimate of the total magnitude of a given 
microbial process in the ecosystem. For example, soil denitrification in agricultural 
systems may be an important mechanism of fertiliser N loss. Soil denitrification 
measurements exhibit highly skewed frequency distributions. Since the volume of a 
soil sample collected for denitrification determination typically has no particular 
significance, and because the median of a soil sample population is functionally 
dependent upon the volume of the samples, the median will underestimate the mass 
of N lost via denitrification. A possible exception may be the deliberate targeting of 
urine patches in grazed pastures. In this situation, if one is interested in characterising 
the population of urine patches, and not necessarily in estimating denitrification loss 
from the entire pasture, the median could be used. 

The mean (centre of gravity of the distribution) is a better indicator of the total N loss 
from a particular system. In pollution monitoring, Gilbert (1987) defines the total mass 
of pollutant at a site as the ‘inventory’ of the pollutant. If the inventory of the pollutant 
is the desired summary variable, then the median is the wrong estimator of location, 
since it will systematically underestimate the total mass of material at the site (for 
positively skewed distributions). Since the mean should instead be the location 
parameter of choice, statistical tests of the mean (and not the median) should be used 
for hypothesis testing.  

6.4.3.5 Power of hypothesis testing procedures 
Previous sections discussed optimum methods for computing summary statistics of 
log-normally distributed data. However, many studies typically wish to investigate 
beyond the estimation of population parameters from sample data. In many cases, 
sampling is conducted to evaluate treatment effects. The assumption of normality is 
typically required in the application of standard statistical tests. Non-normality will 
influence the ability of a statistical test to perform at the stated α level. Non-normality 
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will also affect the power of a statistical test to detect differences when real 
differences in the underlying populations actually exist.  

The preceding discussion highlighted the fact that, with log-normally distributed 
variables, there is a choice of location parameters, and that the appropriate choice 
must be consistent with the objectives and methodologies of the problem under study. 
After selecting the appropriate location parameter, consideration must be given to the 
statistical methods used at the hypothesis testing stage. It is imperative that the 
experimenter who has to analyse positively skewed data understands what is being 
compared when log-normally transformed data, or nonparametric procedures, are 
used.  

Parkin (1993) evaluated several hypothesis tests for determining differences in means 
and medians of log-normally distributed variables. He observed that transformation 
for normality and applying a t-test is a test of differences in medians. Such a procedure 
is insensitive to any differences between population means. A similar result is obtained 
when parametric approaches are applied. If the median is the location estimator of 
interest, this is not a problem. However, if the mean is the location estimator of 
interest, neither of these recommendations is sufficient. A t-test performed on 
untransformed data and the confidence limit overlap method were insensitive to 
differences in population median, but were sensitive to differences in population 
means.  

At any given sample size, the t-test on untransformed data detected differences at a 
lower frequency than the mean confidence interval overlap method. This latter test 
was also operating at a Type I6 error rate substantially less than the nominal α-level at 
which it was applied. Thus, the mean confidence interval overlap method is a 
conservative test. For the log-normal case described here – regardless of whether the 
mean or median is the estimator of interest – at sample sizes of n = 4, very poor power 
is available. When lower sample numbers are available, the only way to increase 
power is to apply the tests at higher α levels. An Excel spreadsheet for computing the 
UMVU estimates of the mean and variance of a log-normally distributed variable along 
with Land’s exact confidence limits of the mean is available from T.B. Parkin. 

6.5 Estimation of emission factor (EF) 
Emissions factors (EF) – representing the proportion or percentage of the N applied as 
urine, manure, or fertiliser emitted as N2O over the course of a growing season or 
annually – are often calculated from N2O emissions field data (Cardenas et al. 2010; de 
Klein et al. 2006). Values of the EF can be estimated by subtracting the cumulative N2O 
emissions occurring in a control treatment where no N was added, and from the 
cumulative N2O emissions in a given experimental treatment where N was added, then 
dividing the difference by the amount of N added. EF values can be calculated using 
the mean cumulative emissions for each treatment receiving N addition over all 
replicates, and likewise, using the mean cumulative emissions for the control 

                                                       
6 True null hypothesis incorrectly rejected. 
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treatments over all replicates. This will obtain a single EF value for each experimental 
treatment, but with no indication of variance.  

Alternatively, EF values can be calculated for each individual treatment replicate. In 
this case, cumulative emissions for the control treatment within each block (replicate) 
should be subtracted from the cumulative emissions for a given experimental 
treatment within the same block, in order to determine the EF value for that particular 
treatment and replicate. This procedure allows for calculation of mean and variance of 
each EF value, and for examining differences in the EF among treatments. In this case, 
users are referred to the considerations and recommendations discussed in the 
previous sections on statistical analysis and hypothesis testing.  

It is normally expected that N2O emissions from treatments receiving added N will be 
greater than emissions from no-N control treatments. However, in cases where 
cumulative N2O emissions are greater in the control than in the treatment replicate (EF 
< 0), we do not recommend simply substituting EF = 0 for these values. Rather, include 
the actual value in the subsequent statistical analysis, unless excluding that value as an 
outlier is justified. It should also be noted that some studies have found non-linear 
relationships between amounts of N added and N2O emissions, at least for synthetic N 
fertiliser addition (e.g. Hoben et al. 2011). This implies that EF can vary, depending on 
N addition rate. Thus, it should be kept in mind that an EF calculated for a single rate of 
N addition may not necessarily be generalisable to other N addition rates, even within 
the same management and cropping system. 

6.6 Conclusion 
Use of chambers to determine soil-to-atmosphere emissions of N2O is labor intensive 
and requires collection and processing of relatively large data sets. Due to the 
inherently variable nature of N2O emissions and the inherent tendency of chambers to 
alter the quantity being measured, substantial care is required to optimize analysis of 
the collected data. Careful consideration of appropriate analysis procedures as 
discussed in this chapter will ensure that upstream efforts with regard to chamber 
design, sampling regimes, and other aspects of the methodology will generate the 
most meaningful and statistically valid results. 
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