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demonstrated effective spectral acquisition and data processing for real-time classification of chickens on a
140 bpm processing line. Real-time online testing successfully differentiated between wholesome and
unwholesome birds using a neural network classification model with 20 input nodes that correctly classified
94% and 92% of wholesome and unwholesome birds, respectively. This work demonstrates the effectiveness of
the Vis/NIR inspection system for accurate real-time product and shackle tracking on commercial chicken
processing lines.
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1. Introduction

Automated processing systems help the poultry industry to
improve product safety, quality, consistency, and increase processing
efficiency by increasing line throughputs and reducing wastewater
output. Current poultry processing systems are highly automated,
including various stages of processing on the kill and evisceration
lines as well as additional operations such as cutting and deboning of
product. However, safety inspection of poultry carcasses on eviscer-
ation lines is one area in which automation is not yet fully utilized.
Currently, each chicken intended for sale to U.S. consumers is required
by law to be inspected post-mortem by a USDA/FSIS (United States
Department of Agriculture/Food Safety and Inspection Service)
inspector for its wholesomeness [1]. These inspectors visually
examine the exterior body, the interior of the body cavity, and the
organs of each bird for indications of diseases or defects. For effective
inspection and occupational considerations, each inspector is limited
to a maximum working speed of 35 birds per minute (bpm). This
current inspection system limits the production efficiency of proces-
sing plants that seek to satisfy increasing consumer demand for
poultry products by increasing operating speeds and overall through-
put. One possible solution to this problem is for poultry processing
plants to install on-line instrumental inspection systems that can
accurately screen for wholesome carcasses. Inspectors then would
only need to “re-inspect” questionable carcasses to prevent whole-
some carcasses from being discarded. This approach would dramat-
ically reduce the number of birds requiring direct inspection by
humans. An obvious benefit of automated poultry inspection would
be improved overall production efficiency for the processing plants.

Live birds are hung on kill lines, which typically operate at 140 or
180 bpm. On a kill line, birds are stunned, bled, scalded, defeathered,
and their heads and feet are removed, before they are rehung onto an
evisceration line. Typically, birds on a single kill line will be
transferred to two separate evisceration lines. Most evisceration
lines in the U.S. use either a Stream-line Inspection System (SIS) or a
New Efficient Line Speed (NELS) system. Under SIS, an evisceration
line operates at 70 shackles per minute with two USDA inspection
stations on it, while a NELS evisceration line runs at 91 shackles per
minute with three USDA inspection stations. At each inspection
station, a USDA/FSIS inspector works with the aid of a helper and a
trimmer. Condemnable birds – unacceptable for sale to consumers –

are identified by the inspectors and immediately removed from the
evisceration lines for disposal.

Implementing an automated inspection system for operation on
kill lines requires development of an effective system interface for the
inspection system to work with the larger processing line, and would
be optimized with the use of an effective tracking control system that
can track the progress and fate of any individual bird that enters the
processing line. Operating an inspection system on the kill line presents
twomajor benefits. First, with a single rejection point on the kill line, no
condemnable birdswould enter the evisceration line, allowing forbetter
hygieneandhigher line speedson theevisceration line. Second,working
with known technology to remove rejected birds from the kill line, such
a system can be easily integrated into product-tracking systems. To
operate on the kill line, any automated inspection systemmust be able
to function at speeds of at least 140 or 180 bpm.

Visible/Near-Infrared (Vis/NIR) spectroscopy has been shown
capable of detecting systemic conditions manifesting in skin and
tissue changes. A Vis/NIR spectroscopy technique was first used to
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classify wholesome and unwholesome chicken carcasses by [2], and
was demonstrated capable of separating fixed (stationary) whole-
some carcasses from unwholesome carcasses in the laboratory with a
classification accuracy of 93% for wholesome and 96% for unwhole-
some. A Vis/NIR spectroscopic system was later used for classifying
chicken carcasses on-site at a slaughter plant [3]. Fresh carcasses were
taken directly from the processing line for an offline measurement
using a Vis/NIR probe placed in direct contact with each sample for a
2-s stationary reflectance measurement, with a resulting average
classification accuracy of 93%. A transportable photodiode array Vis/
NIR spectroscopic system was then developed and on-line trials
performed at a chicken processing plant [4]. Spectra (470–960 nm) of
1750 chicken carcasses (1174 wholesome and 576 unwholesome)
weremeasured. The instrumentmeasured the spectra of veterinarian-
selected carcasses on a processing line running at 70 bpm. Classifi-
cation models, using principal component analysis as a data pretreat-
ment for input into neural networks, were able to classify the
carcasses with a success rate of 95%. The results showed promise for
using a Vis/NIR spectroscopic system to separate unwholesome from
wholesome carcasses on-line in a poultry-processing environment.

The objective of this work is to demonstrate a Vis/NIR Inspection
System interface for effective online poultry wholesomeness inspec-
tion under research conditions, and describe the use of the interface
with a Tracking Control System appropriate for commercial imple-
mentation of the inspection system.

2. Current automated poultry processing

The first two stages for typical U.S. commercial broiler chicken
processing are the Kill and Evisceration lines, which are closed-loop
shackle lines on which birds are hung upside down by the ankles;
these high-speed lines move the birds through automated steps of
processing. Currently, a typical Kill line operates at 180 or 140 bpm
and includes stunning, killing, scalding, defeathering, and feet
removal. An automated rehanger unit transfers the birds from one
kill line to two or more evisceration lines, which may operate at
speeds up to 140 bpm. Automated evisceration draws the internal
organs out of the body cavities of the birds. The birds then move on to
the inspection stations where the body and organs can be examined
by human inspectors. Inspectors identify unwholesome birds that
must be immediately removed from the line; birds that pass
inspection continue to washing, chilling, and additional processing
such as sizing and distribution, cut-up and deboning, and product
presentation.

For fully automated systems, synchronization is required for the
kill line, rehangers, and evisceration lines to work effectively. The kill
and evisceration lines each have a fixed number of shackles, and the
rehangers must precisely transfer birds from kill to evisceration lines
with a minimum of dropped birds for effective production. A tracking
control system is used to track broilers throughout this process,
providing data for a variety of important purposes including
production efficiency, process control, quality control, and food safety
mandates. For example, bird counts, pre- and post-process weights,
waste/byproduct and product ratios, etc., are routinely compiled for
basic production statistics, per day or per shift, to evaluate product
yields and operation efficiency, as well as the overall condition of bird
flocks received from various growers. Birds rejected at the inspection
stations for conditions that can affect food safety are counted, and
excessively high reject counts can be cause for investigation into
grower operations. High numbers of empty shackles or damaged birds
can also be indicators of equipment problems, such as over scalding
(excessive temperatures in scalding tanks), malfunctions, or lack of
synchronization. Ongoing databases of bird information or operation
data can be maintained.

U.S. food safety laws mandate that all chickens sold for human
consumption must pass inspection. This is one of the driving forces
behind the development of automated poultry inspection systems,
since the combination of increasing demand, inspector shortages, and
production space limitations puts pressure on poultry processors to
increase their operation speeds. The food safety mandates also create
peripheral efficiency problems, such as for feet (paw) harvesting.
Paws are removed on the kill line, long before the corresponding
bodies reach the inspection stations. Current systems most often
collect paw batches in hoppers that are held waiting until the bodies
pass the inspection station; the occurrence of any single rejected bird
at inspection will cause an entire hopper of feet to be discarded, with
some significant economic loss. Some other systems maintain
extremely long kill lines that continue holding one pair of paws per
shackle long after the point where the automated rehanger trans-
ferred each broiler body to the evisceration line. The paws on the kill
line simply continue to run through an extra holding space until the
corresponding body passes inspection; in this case, by tracking the kill
line shackles (holding paws) and the evisceration line shackles
(holding bodies), a single rejected bird at inspection can be used to
trigger disposal of only the corresponding pair of paws. This system
minimizes economic loss but requires an expensive investment of
extra space and equipment.

3. Visible/Near-Infrared system interface

3.1. Visible/Near-Infrared chicken inspection system

The automated spectroscopy-based inspection system is installed
at a fixed point on the kill line and measures Vis/NIR reflectance
spectra from across the breast area of each bird. The system acquires
Vis/NIR spectral data using quartz tungsten halogen illumination with
a bifurcated fiber-optic probe, spectrograph, and a spectroscopic
charge-coupled device (CCD) detector. An industrial computer and in-
house developed software modules are used to acquire the spectral
data for each bird and to process the data in real-time to produce a
classification output identifying each bird as being either a whole-
some bird or not, before the next bird arrives at the probe. This system
was specifically developed to identify birds exhibiting systemically
diseased unwholesome conditions, which cannot be sold and must be
removed from the processing lines.

The fiber-optic probe (Schott-Fostec, Auburn, NY) consists of one
inner and six outer fiber optic bundles. The outer optic bundles
transmit light to the bird surface, and fibers of the inner optic bundle
returned reflected light to a photo detector. At the measurement end,
the outer bundles are angled 10° inward, providing a minimum
working distance of approximately 2 cm between probe and bird,
with a 200 mm2 illuminated spot (approximately 16 mm diameter).
At the source, the outer bundles take in light from a 100-W quartz
tungsten halogen light that is focused on the source ends of the outer
bundles using a condensing/imaging lens assembly (f/1.8, 33-mm
aperture, UV-grade fused silica). The light travels to the measurement
end of the probe to illuminate the chicken surface, and after some
interaction with meat and skin, reflected light is acquired through the
central 7.5-mm diameter aperture and enters the inner optic bundle.
The inner optic bundle carries the light to a slit adjusted to be 4-mm
high by 50 μm wide and positioned before the spectrograph (MS125,
Oriel Instruments, Stratford, CT). With a focal length of 120 mm, a
grating ruling of 400 lines/mm, and a fixed-size entrance slit (3-mm
high by 10-μm wide), the spectrograph disperses light onto a CCD
detector with a 1024×128 pixel array CCD detector (Oriel model
78440). The front-illuminated CCD detector has a pixel size of 26 μm2

and is thermoelectrically cooled, with a spectral response range from
180 to 1000 nm with a maximum readout time of 300 spectra per
second.

Software for the system interface was developed in-house using
LabView (National Instruments, Austin, TX). The software addresses
four primary functions: system initialization, data collection, data
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analysis and modeling, and prediction of poultry carcasses. Fig. 1
shows the front panel user interface for the system software. The
system initialization module utilizes the 32-bit driver
(ATMCD32D.DLL, Oriel Instruments) to initialize the CCD detector
and set CCD temperature control, data acquisition mode, exposure
time, and data readout mode. After system initialization, the data
collection module enables real-time data acquisition and data storage
in a database (Access, Microsoft Corp., Redmond, WA). Raw spectra
(1024 points) are recorded as percentage reflectance. The spectra are
processed in real-time by a 9-point running mean followed by a
second difference (S") calculation according to the formula

Sqn = Sn−g−2 × Sn + Sn+g ð1Þ

where Sn is the spectral value at point n, and g is the gap in data points.
A gap value of g=31 was selected to produce the effect of the fixed
bandpass filter used in related studies [5]. The second difference
calculation reduces shifting baseline effects and isolates overlapping
peaks. By taking every fifth point from the second difference
spectrum, a reduced second difference of 190 data points is produced.
Data analysis was performed on these reduced second difference
spectra. The Principal Component Analysis (PCA) algorithm [6] was
implemented to approximate the spectral vector of each bird with a
linear combination of set uncorrelated (orthogonal) vectors:

Y≅a1C1 + a2C2 + a3C3 + … + akCk ð2Þ

where Y is the spectral vector, Ck is the kth factor (component), and ak
is the kth coefficient of the linear combination. Coefficients a1 to ak are
called the scores of the spectral vector. In this way, the dimension of
the spectra in a wavelength space can be transformed into a vector
space with k dimensions spanned by the k factors. PCA was used as
preprocessor to produce principal component scores that were used
as inputs to a neural-network based classification model. The
classification model used neural networks with the DataEngine V.i
function library for LabView (Management Intelligenter Technologien
GmbH, Germany) to produce a real-time classification output
indicating the bird to be either wholesome or unwholesome.
Fig. 1. LabView user interface for Vis
3.2. Tracking control system

A Tracking Control System (TCS) able to track birds from the
beginning of the kill line through the end of the evisceration line is
necessary for implementation of the Vis/NIR inspection system on a
commercial processing line. Remote monitoring of theVis/NIR
inspection system can be by OPC (Object-Linking-and-Embedding
for Process Control) between the Vis/NIR system and the program-
mable logic controller (PLC), which monitors and controls shackle
operations throughout the processing plant. Fig. 2 shows key
elements of the processing line layout needed to implement
automated inspection. The Counting Stations (CS), located on the
kill line, automated rehanger, and evisceration line, identify individual
birds as they travel through the system to ensure proper data
correspondence between the Vis/NIR inspection system on the kill
line and verification on the evisceration line. Photoelectric sensors
enable each Counting Station to detect and count shackles and to
detect whether a bird is occupying a shackle or not. After inspection
by the Vis/NIR system on the kill line, birds are physically transferred
by the automated rehanger to the evisceration line, and checks
conducted using Counting Stations B–F will detect any unsuccessful
transfers. On the evisceration line, the birds are vented and drawn
before entering FSIS inspection stations where they are examined by
human inspectors.

The control system process for tracking birds through the Counting
Stations is detailed in Table 1. A default attribute value initially assigned
to eachbird at the start of the kill line is re-assigned as thebirdpasses (or
does not pass) through later counting stations. The control systemmust
track individual birds and their attributes through to the end of the
processing line. At CS-A, each bird is first assigned an ID number and the
default attribute value, which is saved in aMicrosoft Access database for
that individual bird. As it travels from the kill line onto the Rehanger,
onto the evisceration line and through the FSIS inspection zone, the bird
attribute will be reassigned to wholesome if it passes successfully
through to CS-H. If a bird is successfully identified through CS-G but not
at CS-H, it is presumed to have been condemned by FSIS inspectors and
its attribute is reassigned to unwholesome. If a bird is successfully
identified at CS-A, but is not successfully identified at CS-F or CS-G, its
attribute is reassigned to lost.

When a bird is in position for inspection on the kill line, the PLC
that is tracking the shackles uses OPC to send the bird ID number and a
/NIR chicken inspection system.



Fig. 2. Schematic diagram of kill and evisceration lines, detailing counting stations (CS)
key to operation of the Tracking Control System.
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control signal to the Vis/NIR inspection systems via TCP/IP Ethernet
data communication protocol. This initiates automated inspection of
that bird. This occurs on a bird-by-bird basis, each time prompting the
Vis/NIR inspection system to acquire the spectral measurement for
each bird, perform spectral preprocessing (smoothing and second
difference calculation), and save both original and processed spectral
Table 1
Tracking control system steps for Counting Stations CS-A through CS-H.

CS-A
I For an occupied Kill Line shackle, assign a bird ID number and default

attribute value (=4) to bird.
II Load ID and attribute data into the Kill Line data array which stores the

information with corresponding Kill Line shackle number.
III Send signal to Vis/NIR inspection system—bird is in position for inspection.

Vis/NIR Inspection System
I Receive bird ID number.
II Acquire spectral measurement of bird.
III *Classify bird as wholesome or unwholesome and save decision data.

CS-B
I Identify the Kill Line shackle entering the Automated Rehanger.

CS-C
I Transfer data array elements for occupied shackle – bird ID number and

attribute value – from Kill Line data array to Rehanger data array as the bird
is moved from Kill Line shackle to Rehanger carrier.

CS-E
I Transfer data array elements from Rehanger data array to the Evisceration

Line data array as the bird is moved from Rehanger carrier to Evisceration
Line shackle.

CS-F
I If Evisceration Line shackle is empty despite corresponding Rehanger carrier

or Kill Line shackle having been previously occupied (bird was physically
dropped), at this point the bird attribute is reassigned (=2) to indicate that
the bird was lost. Otherwise, default value remains (=4).

CS-G
I If previously occupied Evisceration Line shackle is detected as empty, the

bird attribute is reassigned (=2) to indicate that the bird was lost.
Otherwise, default value remains (=4).

FSIS
I Visual inspection is performed by a human inspector.

a If bird passes inspection, inspector takes no action and the bird remains
on the shackle.

b If the bird does not pass inspection, inspector removes the condemned
bird from the shackle for disposal

CS-H
I If the Evisceration Line shackle is still occupied by a bird, the bird attribute is

reassigned to wholesome (=1).
II If no bird is detected on the previously occupied shackle, the bird attribute is

reassigned to unwholesome (=0).
data in a Microsoft Access database with corresponding bird ID and
attribute values.

For commercial implementation, the inspection decision produced
for each bird by the Vis/NIR inspection system will initiate immediate
rejection and removal of condemned birds from the kill line, before
the birds reach the Automated Rehanger. For this real-time operation,
the system will send the decision signal (accept or reject) to the PLC,
which will then remotely trigger mechanical rejection of the bird to
occur at or prior to the Automated Rehanger unit. In addition,
information from the system can be relayed to a remote central
computer managing food safety inspection and quality monitoring
issues for the poultry processor.

Table 1 details key points of the TCS for online implementation of
the Vis/NIR inspection system. For research, the Vis/NIR inspection
system saves a bird classification decision (see * in Table 1) that is
saved for performance verification purposes during online experi-
ments. For real-world use, an additional counting station and a
rejection point would be installed prior to the location of CS-B, and the
classification decisionwould trigger the transmission of a signal to the
bird rejection point for rejecting unwholesome birds before they
reach the Automated Rehanger, and the corresponding bird attribute
would be reassigned to unwholesome (=0).

4. In-plant online testing of Visible/Near-Infrared interface

4.1. Procedures

Collection of spectral data to use for classification model
development was performed over a two-week period on-site at a
commercial chicken processing plant. Spectral data was acquired for
totals of 900 wholesome birds and 852 unwholesome birds. Chicken
carcasses on several commercial processing lines were identified as
wholesome or unwholesome at six FSIS inspection stations, placed
onto portable racks by inspectors' assistants, and these small batches
(up to 20 birds at a time) were immediately transported to a nearby
room for experimental online spectral data acquisition. The carcasses
were manually hung onto the shackles of a 17.7 m overhead conveyor
running through a closed rectangular loop (6.7×3.1 m). The overhead
conveyor, equipped with a variable frequency-controlled drive
system, was preset to operate at a line speed of 140 bpm for this
experiment. Prior to spectral measurement of the chicken carcasses,
reference and background measurements were taken. To establish a
spectrally flat, repeatable, high energy reference, a reference
spectrum was collected by placing the fiber optic probe 2 cm from
the surface of a 10×10 cm square, 14-mm thick Spectralon reflec-
tance target (Labsphere, Sutton, NH) that provided approximately
99% effective diffuse reflectance throughout the wavelength region
examined. A background measurement was taken, to compensate for
the zero energy signal, by placing the optical probe 2 cm from the
bottom of an enclosed black cylindrical Teflon sample cell with the
light source turned off. Spectra were recorded as percent reflectance
according to the following formula:

% Reflectance =
100 × ðsample reflectance−backgroundÞ

ðreference−backgroundÞ : ð3Þ

The CCD detector, controlled through the system software
(interface shown in Fig. 1), accumulated 3 scans per measurement,
with full vertical binning resulting in 1024 data point for each spectral
measurement. The single-scan exposure time was 20 ms; conse-
quently, a single chicken carcass was scanned over a total time of
60 ms. A photoelectric sensor (Model QS30LDLQ, Banner Engineering
Corp., Minneapolis, MN) was used to synchronize the data acquisition
with bird position in the field of view. Afterwards, the FSIS veterinary
medical officer examined the wholesome or unwholesome condition
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of each bird, including specific postmortem conditions, and each
diagnosis was recorded for correlation to the spectral database.

4.2. Classification modeling

The raw spectra were recorded as percentage reflectance, consist-
ing of 1024 points spaced 0.5009 nm apart, from 431.0 to 943.5 nm. A
9-point running average and second difference with gap=31 points
was applied to each spectrum. Selection of every 5th point further
reduced each spectrum to 190 points (450.6–924.0 nm).

The full development data set of 900 spectra for wholesome birds
and 852 for unwholesome birds was divided into three subsets for
development of neural-network-based classification models: training,
test, and validation. Every third spectrum, startingwith the first in order
of collection, was used for training; every third spectrum, starting with
the second,wasused for testing; and every third spectrum, startingwith
the third, was used for validation. This division produced three separate
datasets, each containing 300 wholesome and 284 unwholesome
spectra. Principal component analysis was then applied, using principal
components calculated for the training set to produce scores for each
spectrum in the training, testing, and validation sets.

The scores were then used as inputs into a feed-forward-back-
propagation neural network. Neural network classification was tested
using 10, 20, and 30 input nodes. The corresponding numbers of
hidden nodes were derived based on the square root of the input
nodes, i.e. 3, 4, and 5, respectively. All 3 neural network configurations
produced 2 final output nodes. The output nodes were (0 1) or (1 0)
depending on whether the sample was identified to be wholesome or
unwholesome by the veterinarian. For each of the 3 neural network
configurations, 4 classification models using combinations of two
learning rules and two transfer functions were tested—delta and
cumulative delta, and tanh and sigmoid [7], as shown in Table 2.

Each of the neural network classificationmodels was trained using
scores from the training set; the neural network weights produced by
each iteration was evaluated using the test data set, for the
determination of the network weights of each model using the
savebest procedure (NeuralWorks Professional II/Plus, NeuralWare,
Inc., Pittsburgh, PA). The validation set scores were then used to
measure the performance of the each model, independent of the
training and testing datasets, to select one of the 12 models—i.e. the
specific combination of learning rule, transfer function, and number of
input nodes to the neural network.

The selected neural network classification model was then used for
online classification of birds on a 140 bpm commercial chicken
processing line, with the assistance of the FSIS Veterinary Medical
Officer for performance verification. Because the real-world incidence of
systemically diseased unwholesomebirds is low (approximately 0.2% of
birds processed), this in-plant testing was performed over a period of
2 weeks in order to collect adequate numbers of unwholesome birds
from one chicken processing line for model testing. The FSIS Veterinary
Medical Officer observed individual birds on the processing line to
identify wholesome and unwholesome birds, the condition of which
could then be recorded and correlated to the spectral measurements
acquired for each bird. An additional color sensor was positioned at
shackle height, to detect steel pendants placed on the shackles of
wholesomeandunwholesomebirds as they passed through the spectral
measurement area. Differently colored panels on the pendants
Table 2
Neural network models.

Model Learning rule Transfer function

1 Delta Sigmoid
2 Delta Tanh
3 Cumulative delta Sigmoid
4 Cumulative delta Tanh
identified the corresponding birds as being either wholesome or
unwholesome, as evaluated by the FSIS Veterinary Medical Officer.
Spectralmeasurements and bird evaluationswere acquired for a total of
1442 chicken carcasses (721 wholesome and 721 unwholesome) used
to evaluate the selected classification model.

5. Results and discussion

The average reflectance spectra of wholesome and unwholesome
chickens on the 140 bpm closed-loop line are shown in Fig. 3. With
the exception of baseline variations, the spectra of wholesome and
unwholesome chickens were similar. The overall vertical offset of any
particular spectrum was caused by variable scatter and surface
reflectance as well as small variations in probe-to-sample distance,
which have little effect on category characteristics. To reduce the
visual impact of shifting baseline effects and to isolate overlapping
peaks, second difference spectra (calculated with a gap size of
15.5 nm) were calculated for all wholesome and unwholesome
chicken spectra. Fig. 4 shows the mean second difference spectra
calculated for wholesome and unwholesome chickens on the closed-
loop processing line. The wholesome and unwholesome second
difference spectra showed the most distinct differences in absorption
band peaks at 458, 490, 540 and 574 nm and valleys at 514, 556, and
592 nm, and to a lesser extent at 716 and 816 nm.

For well-bled meat, meat surface coloration is largely the result of
the relative amounts of three forms of myoglobin, i.e. deoxymyoglo-
bin, metmyoglobin, and oxymyoglobin [8]. The deoxymyoglobin and
oxymyoglobin components coexist with metmyoglobin in both
wholesome and unwholesome chicken meats and the three forms of
myoglobin can inter-convert and may degrade through oxygenera-
tion, oxidation, and reduction reactions when external processes such
as cold storage, cooking, and irradiation are applied [9], [10]. The
absorption bands around 458, 490, 540, and 574 nm represent the
effects of various conformational structure of myoglobin, while the
absorption bands at 740 and 835 nm could be a combination of lipids,
water, and various forms of myoglobin absorptions. These absorption
areas form a major base for spectral differentiation of wholesome
chicken from unwholesome chicken.

PC 1 and PC 2 scores for the closed-loop training set are plotted in
Fig. 5. The PC 1 scores show wide variation for both wholesome and
unwholesome chicken spectra. However, for the PC 2 scores, a pattern
is evident in which the wholesome scores are positive and the
unwholesome scores are negative, with some slight overlap.
400 450 500 550 600 650 700 750 800 850 900 950
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Fig. 3. Mean reflectance spectra (solid lines) of wholesome (blue) and unwholesome
(red) chicken carcasses, with one standard deviation envelope (dotted lines).
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Table 3
Classification accuracies resulting from 10, 20, and 30 input nodes to the neural
network.

Wholesome
carcasses

Unwholesome
carcasses

All
carcasses

10 input nodes
Model 1 92 88 90 Test

90 89 89.5 Validation
Model 2 91 88 89.5 Test
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Examination of the loading weights (not shown) for PC1 and PC2
found the loadings to be similar to the second difference spectra.
Loading weights are the regression coefficients at specific wave-
lengths for each PC and show the relative contribution of those
wavelengths to the amount of spectral variation for which that
accounts. Of particular interest in the spectral region near 490 nm—

this region has been correlated to metmyoglobin, which is found in
greater amounts in unwholesome meat than in wholesome meat, and
is thought to be a degraded form of oxymyoglobin and deoxymyo-
globin [11].

Fig. 6 shows the Root Mean Square Error of Cross-Validation
(RMSECV) for the closed-loop training data set. With one-sample-out
cross-validation, the error decreased with each additional PC, with the
last significant incremental decrease in error occurring with PC 5.

For 10-, 20-, and 30-input neural networks, Table 3 shows the
testing set and validation set results for each of the four models. Using
as inputs the scores calculated from 10 PCs, the overall classification
accuracies ranged from 83% to 90%. With 20 input nodes, the
classification accuracies improved, with Model 1 (delta learning rule
and sigmoid transfer function) achieving the best accuracies. For the
test data set, 96% of wholesome carcasses and 92% of unwholesome
carcasses were correctly classified byModel 1, for an average accuracy
of 94%. For the validation set, 95% of wholesome and 92% of
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Fig. 5. PCA score plot of components 1 and 2 for wholesome (circle) and unwholesome
(triangle) chicken carcasses.
unwholesome carcasses were correctly classified by Model 1, for an
average accuracy of 93.5%. With 30 input nodes, the classification
accuracies did not increase significantly. In general, the models using
the delta learning rule performed better than those using the
cumulative delta learning rule. It was also noted that the classification
accuracies of Model 4, using the cumulative delta learning rule with
the hyperbolic tangent transfer function, were consistently lower than
those of the other three models.

Classification Model 1 was used for in-plant online testing of the
inspection system interface. The full data set of 1442 chicken spectra
measured online (721 wholesome and 721 unwholesome) was
divided into three sets, for model training (521 wholesome and 521
wholesome), testing (100 wholesome and 100 wholesome), and
validation (100 wholesome and 100 unwholesome). Results for the
validation set, which was used to measure model performance
91 87 89 Validation
Model 3 90 88 89 Test

89 84 86.5 Validation
Model 4 91 78 84.5 Test

90 76 83 Validation

20 input nodes
Model 1 96 92 94 Test

95 92 93.5 Validation
Model 2 95 92 93.5 Test

94 92 93 Validation
Model 3 93 92 92.5 Test

94 91 92.5 Validation
Model 4 93 90 91.5 Test

91 89 90 Validation

30 input nodes
Model 1 95 93 94 Test

94 92 93 Validation
Model 2 95 92 93.5 Test

95 91 93 Validation
Model 3 94 92 93 Test

93 92 92.5 Validation
Model 4 90 90 90 Test

91 90 90.5 Validation



Table 4
Classification results for real-time chicken inspection, validation set of 200 carcasses.

Chicken condition:
wholesome

Chicken condition:
unwholesome

Classification result:
wholesome

94 8

Classification result:
unwholesome

6 92
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independently from the training and testing datasets, are shown in
Table 4. For the validation set, 94 wholesome and 92 unwholesome
carcasses were correctly classified, for an average classification
accuracy of 93%. Type I error (economic loss risk) occurs when
wholesome carcasses are incorrectly identified as unwholesome. Type
II error (public health risk) occurs when unwholesome carcasses are
incorrectly identified as wholesome. For the validation set, Type I
error was 6% and Type II error was 8%. Both Type I and Type II errors
must be considered for sorting purposes: (1) whether wholesome
birds identified as unwholesome (Type I error) will be thrown out
with the unwholesome birds on a rejection line, or will be re-
examined or reprocessed by human inspectors, and (2) whether there
is to be an additional human inspector to catch unwholesome birds
mistakenly identified as wholesome (Type II error) on the processing
line.

An effective real-time inspection system must have the capacity
for rapid spectral measurement, data processing, and classification
computation within a limited time window. This study demonstrated
that the Vis/NIR inspection system interface is capable of handling
high speed spectral data acquisition, processing, and decision output
that will be necessary to commercial implementation.
6. Conclusions

A new Vis/NIR inspection system interface was developed in order
to conduct research to test and implement an automated Vis/NIR
chicken inspection system for online operation on commercial
chicken processing lines. The Vis/NIR spectroscopic system was
developed using modularized software components and was demon-
strated capable of collecting and processing real-time spectral
measurements for chickens on a 140 bpm processing line. Data
analysis and modeling demonstrated that the system can successfully
differentiate between wholesome and unwholesome birds, using a
neural network classification model with 20 input nodes that
correctly classified 94% and 92% of wholesome and unwholesome
birds, respectively. This work demonstrates that with Vis/NIR
Inspection interface can effectively allow the laboratory-developed
Vis/NIR spectroscopy-based inspection system to operate on com-
mercial poultry processing lines requiring accurate real-time bird and
shackle tracking on kill line and evisceration line.
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