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A NOVEL INTEGRATED PCA AND FLD METHOD ON

HYPERSPECTRAL IMAGE FEATURE EXTRACTION FOR

CUCUMBER CHILLING DAMAGE INSPECTION

X. Cheng,  Y. R. Chen,  Y. Tao,  C. Y. Wang,  M. S. Kim,  A. M. Lefcourt

ABSTRACT. High−resolution hyperspectral imaging (HSI) provides an abundance of spectral data for feature analysis in image
processing. Usually, the amount of information contained in hyperspectral images is excessive and redundant, and data min-
ing for waveband selection is needed. In applications such as fruit and vegetable defect inspections, effective spectral com-
bination and data fusing methods are required in order to select a few optimal wavelengths without losing the crucial
information in the original hyperspectral data. In this article, we present a novel method that combines principal component
analysis (PCA) and Fisher’s linear discriminant (FLD) method to show that the hybrid PCA−FLD method maximizes the rep-
resentation and classification effects on the extracted new feature bands. The method is applied to the detection of chilling
injury on cucumbers. Based on tests on different types of samples, results show that this new integrated PCA−FLD method
outperforms the PCA and FLD methods when they are used separately for classifications. This method adds a new tool for
the multivariate analysis of hyperspectral images and can be extended to other hyperspectral imaging applications for fruit
and vegetable safety and quality inspections.

Keywords. Classification, Dimensionality reduction, Feature extraction, FLD, Hyperspectral imaging, Hyperspectral
sensing, PCA, Principal component.

hilling damage to produce such as cucumbers usu-
ally happens when the produce is stored at low tem-
peratures. The primary cause of the chilling
damage is thought to be the injury of plant cell

membranes (Saltveit and Morris, 1990). Chilling damage is
a result of low temperature over time. Usually, chilling injury
can be recoverable if the produce stays below the critical tem-
perature for only a short period of time. But if exposure to the
low temperature is prolonged, the damage is irreversible.
Detection of chilling damage is difficult, especially at its ear-
ly stages. The symptoms of injury usually develop after the
produce is placed in a warmer environment. Sometimes
symptoms develop slowly and are difficult to detect visually.
In order to find an effective way to detect chilling injury for
automated inspection of fruit and vegetables, a hyperspectral
imaging method is used.
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Hyperspectral sensors have been used to sample the
spectral reflectance from objects. The rich spectral response
provides sufficient information to identify the spectral
reflection peaks and absorbing troughs of materials (Shaw
and Manolakis, 2002). The entire spectral region used for
sensing spans from the visible region through the near−in-
frared is divided into hundreds of narrow and contiguous
bands. The spectral interval can be as narrow as a few
nanometers in wavelength. As a result, over 100 spectral
bands or channels are usually used at the same time. By
adding a dimension of spectral information to two−dimen-
sional spatial images, hyperspectral data can be perceived as
a three−dimensional data cube. Recently, hyperspectral
imaging has become a powerful tool and is of enormous
interest to researchers in fruit safety and quality inspection.
Kim et al. (2001) established a laboratory−based hyperspec-
tral imaging system combining the features of imaging and
visible/near−infrared (Vis/NIR) spectroscopy to simulta-
neously acquire spectral and spatial information for various
food commodities, and Kim et al. (2002a, 2002b) used
hyperspectral imaging methods for fecal contamination
detection on apples. Heitschmidt (1998) used hyperspectral
analysis for fecal contamination of poultry products, and
Chen et al. (1998), Park et al. (2002), and Windham et al.
(2001) showed methods of using hyperspectral imaging for
detecting contamination of chicken carcasses.

Lu and Chen (1998) and Lu et al. (1999) found that only
two or three essential spectral bands were required for
on−line imaging applications to extract unwholesome condi-
tions in food products. Hyperspectral imaging is used as a
research tool to determine those essential bands. All the
spectral data are studied. Band selection and combination
strategies are applied. Since two or three spectral bands for
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limited short−time inspection are usually required for
commercial  applications, the validity of the band−selection
and combination strategy for hyperspectral sensing research
becomes important. The selected essential bands should not
only maintain any valuable details that are needed, but also
simplify the successive discrimination and classification
procedures. This research is focused on developing a band
combination method that can be applied to hyperspectral
research on fruit and vegetable inspection.

A hyperspectral image cube can be considered as a
high−dimensional feature space. Each feature is represented
as a spectral image, and the reflection properties from
wholesome and unwholesome objects are associated as
different patterns. The hyperspectral band selection problem
can then be viewed as a feature extraction problem in
statistical pattern recognition. The well−known linear trans-
forms or projection pursuit methods for feature extraction
and dimensionality reduction are principal component
analysis (PCA) and linear discriminant analysis (LDA). PCA
is widely used in fecal−contaminated apple inspection (Kim
et al., 2002a, 2002b) and other fruit and vegetable quality and
safety inspections. However, Talukder and Casasent (1998)
point out that PCA, as an unsupervised method, is not
necessarily good at drawing distinctions between patterns. In
this article, the objective is to present a new method that
combines the PCA method and Fisher’s linear discriminant
(FLD) method to aid in the criteria development for selecting
spectral bands for multispectral imaging applications. This
new method and the individual PCA and FLD methods are
each applied to cucumber chilling injury inspection. The
detection results obtained by using the new method are
presented and compared with PCA and FLD, respectively.

MATERIALS AND METHOD
SAMPLE MATERIALS

Cucumbers were freshly picked from a farming field.
Ninety cucumbers were divided into 30 groups of 3 cucum-
bers each. Each group was placed in a plastic bag punched
with holes to allow for air circulation. In temperature−con-
trolled cold storage rooms, 15 of the bags were stored at 0°C,
and the other 15 were stored at 5°C. On each day over a

period of 15 days, one bag was moved from each cold storage
room to an air−conditioned laboratory at 18°C to 20°C. Each
day, hyperspectral images were collected for the 6 (two
groups of 3) newly moved cucumbers and for all the
cucumbers previously moved from cold storage. The last two
groups were moved after 15 days in cold storage, and image
collection continued for 6 days afterwards. Chilling injury
was categorized into four different damage levels: trace,
slight, moderate, and severe. For cucumbers stored at 0°C,
symptoms of trace chilling injury first appeared on cucum-
bers that had spent 4 days in cold storage and then 2 days
at room temperature. For cucumbers stored at 5°C, symp-
toms of trace chilling injury first appeared on cucumbers that
had spent 5 days in cold storage and 1 day at room
temperature. Early trace and slight chilling injury was
observed. Some cucumbers that showed early trace and slight
levels of chilling damage subsequently appeared to recover
after several days at room temperature. Typical samples of
these injury levels are shown in figure 1.

A large degree of variation in both color and skin
smoothness can exist between individual cucumbers. These
natural differences increase the difficulty of detecting
chilling damage even during the human visual inspection
process. For instance, bumpy−skinned cucumbers can be
easily mistaken to have trace or slight chilling damage due to
the visual similarities, as shown in figure 2. This became the
most challenging part of our experiment for effective
detection.  The cucumber samples also varied in size and
shape in their hyperspectral images. In order to keep the input
data consistent, only a portion of each cucumber image was
used for the input image samples. The binning size of the
region of interest was 45 × 45 pixels. This size covered the
average spot area of chilling damage. For an individual
cucumber sample, different levels of chilling injury may
appear on different portions of the cucumber skin and thus
may produce different image samples for training or testing
purposes. Data collected for the 90 cucumber samples during
three weeks’ time provided a huge number of input image
samples. Moreover, since the cucumbers developed different
types of chilling injuries unevenly, different numbers of
samples were chosen for training and testing of the algo−
rithms, as summarized in table 1. Three experiments were

(a) Trace (d) Severe(c) Moderate(b) Slight

Figure 1. Four levels of chilling injury (presented in the rectangular area) of cucumbers detected in this study: (a) trace chilling injury, (b) slight chilling
injury, (c) moderate chilling injury, and (d) severe chilling injury. All images were taken at 800 nm (near−infrared).
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(a) slight chilling
damaged cucumber

(b) bumpy good
cucumber

Figure 2. NIR reflectance images of: (a) a cucumber with slight chilling
damage, and (b) a healthy cucumber with bumpy skin. The two images
show the similarity in appearance of the two cucumbers. The images were
taken at 800 nm.

conducted on testing different methods with different types
of cucumber samples.

HYPERSPECTRAL SENSING SYSTEM

A laboratory−based hyperspectral sensing and imaging
system established by the USDA Instrumentation and
Sensing Lab (ISL) was used to scan each sample. For a
detailed description of this equipment, refer to Kim et al.
(2001, 2002a). In this study, only reflectance measurements
were analyzed. The illumination for reflectance imaging was
provided by two 150 W halogen lamps. The equipment was
operated in a line−by−line scan mode at a line length of 460
pixels. The scanned wavelengths ranged from 447.3 nm to
951.2 nm with a 4.5 nm interval, for a total of 112 spectral
bands. Once a single line was scanned, a 112 × 460 (spectral
by spatial) pixel image was generated. Due to the maximum
length of the cucumber samples, 300 lines were accumulated
for each cucumber. During the scanning process, the system
was operated in a darkened room to prevent interference from
ambient light.

Each pixel value in the 1 × 112 spatial−by−spectral image
was proportional to the reflectance factor of the sample at that
pixel position. The reflectance factor was defined by dividing
the reflection radiation intensity at each pixel position of a
sample by that of a known reference under the same
illumination situation. For system calibration, a white
Spectralon panel (Labsphere, Inc.) with nearly 99% reflec-
tion ratio was used as the reference. To obtain a proper
dynamic range of the image data, the reflectance factors were
expanded by a fixed number and then assigned to be the pixel
values of the spatial by spectral image.

Table 1. Cucumber sample diversity.

Class
Total

Number
Type of

Cucumber
Sample
Number

Defective 140 Trace 20
Cucumbers Slight 50

Moderate 35
Severe 35

Good 140 Good with bumpy skin 90
Cucumbers Good smooth 50

FEATURE EXTRACTION WITH INTEGRATED PCA−FLD
METHOD

Principal component analysis (PCA), also known as the
Karhunen−Loeve transform, uses orthogonal axes for dimen-
sionality reduction by performing an eigen−decomposition
of the covariance matrix of the data. Let � represent the
covariance matrix; � can then be obtained by (Johnson,
1998):
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where � is the mean vector of a pixel set, xk represents the kth
random sample of a band vector with a dimension of N
(where N represents the number of feature bands), and n is the
sample size of xk. The dimension of � is N × N. Based on the
variance−covariance matrix (�), a total scatter matrix (St) is
defined as: St = (n − 1) * � (Belhumeur et al., 1997). The ei-
gen−decomposition transform is to maximize the energy of
the projected samples, denoted as:
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where �m is one of the transform vectors used to project the
data samples, and m = 1 ... N. By performing the eigen−de-
composition of the total scatter matrix, it can be demon-
strated that the transformed data compared with the original
data has minimized the mean square error. The magnitude of
the eigenvalue indicates the energy residing in the data along
the direction parallel to the corresponding eigenvector. The
larger the eigenvalue, the higher the energy it represents.
Hence, to reduce the original N−dimensional data to a lesser
dimension (M), one can project the original data to the M
eigenvectors corresponding to the largest M eigenvalues. By
taking the first few significant compositions, this transform
results in a lower−dimensional multivariate feature vector
that still preserves most of the energy in the original
N−dimensional system.

Fisher’s linear discriminant (FLD) method is an effective,
class−specific method that projects the scatter of data to make
them more reliable for classification. Two matrices are
introduced in the FLD: one is the between−class scatter
matrix (Sb), and the other is the within−class scatter matrix
(Sw). The between−class scatter matrix (Sb) is defined as
(Belhumeur et al., 1997):
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and the within−class scatter matrix (Sw) is defined as:
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where i�  is the mean of class i, �  is the mean of the total sam-
ples, c is the number of classes, �i represents the ith class, and
|�i| is the number of samples in class i. The optimal data pro-
jection can be obtained by choosing the transform vectors
(�m) that maximize the ratio of the projected between−class
samples to the projected within−class samples (Efld), defined
as:
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Note that the PCA method does not guarantee the
representation of the feature class separability of the selected
band. On the other hand, the FLD method, although it is
effective in class segmentation, is sensitive to noise and may
not convey enough energy from the original data.

In order to design a set of transform vectors that can
provide supervised classification information well, and at the
same time, preserve enough energy from the original data
cube, a new method is proposed to combine equations 1
through 4 to construct an evaluation equation, which is called
the integrated PCA−FLD method. A weight factor (K) is
introduced to adjust the degree of classification and energy
preservation as desired. The constructed evaluation equation
is given as:
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where ]1,0[∈K , and I is the identity matrix. In equation 5, if
the within−class scatter matrix (Sw) becomes very small, the
eigen−decomposition becomes inaccurate. Equation 6 over-
comes this problem. If the previous situation happens, by ad-
justing the weight factor K toward 1, the effects of Sw can be
ignored, which means the principal components are more
heavily weighted. On the other hand, if the K value chosen is
small, which means more differential information between
classes is taken into effect, then the ratio between Sb and Sw
dominates. The integrated method magnifies the advantages
of PCA and FLD and compensates for the disadvantages of
the two at the same time.

In fact, the FLD and PCA methods represent the extreme
situations of equation 6. When K = 0, only the discrimination
measure is considered, and the equation is in fact equal to
FLD (eq. 5). If K = 1, only the representation measure is
important,  and the evaluation equation is equivalent to the
PCA method (eq. 2). To find the transform that works equally
well on representation and discrimination, one can find the
set of �m that maximizes equation 6 where K = 0.5. The
solution of �m is called the generalized eigenvector, which is
obtained by setting the derivative of equation 6 with respect
to �m to be zero. We have:
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where �m represents the eigenvalues, and �m is the corre-
sponding generalized eigenvector.

For the hyperspectral dimensionality reduction, suppose
that the original feature space is N−dimensional. The reduced
M (M < N) dimensional features can then be formed by
selecting the M generalized eigenvectors corresponding to
the M largest eigenvalues obtained from equation 7. Note that
the K value changes between 0 to 1, which shifts the weight
between PCA and FLD. For a given K value, a maximized
Eevl (eq. 6) is supposed to give an optimal projection on the
original feature space. The projected samples become the
best in representation and classification at the proportion
determined by K. For any application, an optimal proportion
between PCA and FLD exists, and by searching the K value
from 0 to 1, one can find the optimal K value that achieves
the best classification rate of the samples. The changes of the
classification rate by different K values will be discussed in
the next section.

The transformation matrix T (N × M) is formed by
selecting M generalized eigenvectors as the column vectors
in the matrix. The linear transform is defined as:

Y = TTX (8)

where X represents the original feature space with the given
N × J dimension (where N represents the features, and J is the
sample size), and Y is the transformed feature space with
M × J dimension. Y is the new features (or bands) that were
obtained from the linear combination of all the original fea-
tures/bands. Since T consists of M eigenvectors that corre-
spond to the M largest eigenvalues, Y can provide a better
classification and representation ability than the M best sub-
sets of given features in X.

In this study, M = 1 is chosen. Only the eigenvector
corresponding to the largest eigenvalue of equation 7 is used
in the feature extraction. In this case, Y represents a single
feature vector (we call it the first principal feature vector) that
is generated by linear combination of the original N features
by using the integrated PCA−FLD method. Similarly, by
applying the PCA or FLD method individually, one may
obtain the first principal feature vector for PCA or FLD,
respectively, where in PCA the first principal feature vector
is in fact the first principal component. Although the physical
meaning of the first principal feature vector in the integrated
PCA−FLD method becomes unclear, it may provide the best
discriminative  feature compared with any individual N
features in the original feature space.

All methods mentioned above aim to establish a good
transformation matrix to define the similarity or difference
among patterns. When the original hyperspectral data cube
is transformed, spectral feature vectors are obtained for each
image sample selected. A classifier is designed to determine
the category of input image samples. For spectral feature
vectors that belong to one image sample, both the mean and
the standard deviation of the feature vectors are calculated.
The ratio of the standard deviation over the mean is used as
the numerical input variable to ak−nearest neighbor algo-
rithm. The k−nearest neighbor algorithm is used to determine
the k samples in the training set that are closest to the xth
unknown sample in the testing set. Because patterns with
similar attributes should be assigned to the same class,
samples with closer ratios are classified as the same category.
Therefore, if a majority of the k nearest neighbors belongs to
the good cucumber class, then the xth sample is classified as
a good cucumber; otherwise, it is classified as an injured
cucumber. We used k = 15 in the classifier.

RESULTS AND DISCUSSION
Figure 3 shows the averaged reflectance intensity over the

wavelength curves for six types of cucumbers. The main dif-
ference lay in the visible range from 500 nm to 580 nm, and
in the near−infrared range above 700 nm (the visible range
represents the color of cucumber pigment). As shown in fig-
ure 3, cucumbers with severe and moderate chilling injury
had greater absorbance within this spectral range and were
easier to distinguish from the wholesome ones. On the other
hand, cucumbers with trace or slight damages showed little
difference from good cucumbers. In particular, over most of
the spectral range, the curves of bumpy−skin good cucum-
bers were mixed together with those of trace or slightly in-
jured cucumbers. It became much more challenging to
differentiate them.
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Figure 3. The hyperspectral reflectance effect on wholesome (bumpy good and smooth good) cucumbers and unwholesome (with chilling injury levels
of trace, slight, moderate, and severe) cucumbers.

In the new method, the K value was used to adjust the
balance between the representative and classification abili-
ties of the projection matrix, and therefore increased the
flexibility of the method. For different image samples,
however, the optimal K values should differ. An effective
method for K value selection was needed. In this study, we
searched the K value from 0 to 1 at a step of 0.05. When the
K value was changed, the recognition rates varied. As an
example, figure 4 shows the sensitivity of K value versus the
classification rates for two groups in a total four tests using
a small set of only 20 image samples. The samples used for
the four tests are shown in table 2. The overall classification
rate changed gradually over the K values. For different

samples, the optimal K values differed. In the group 1 tests,
where the injured cucumbers were easier to distinguish from
the good ones, the optimal K values were in the range of
0.35 to 0.95. In the group 2 tests, since the two classes of
image samples were similar, the optimal K values were in the
range of 0.05 to 0.60. The overlapping range of optimal K
values was from 0.35 to 0.60. In most cases in this study, a K
value in this range gave the best performance. But as shown
in figure 4b, in the test for detecting trace−injured cucumbers
from bumpy good ones, the optimal K value was from 0.05 to
0.25. A K value between 0.35 and 0.6 resulted in classifica-
tion errors.
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Figure 4a. Good cucumber recognition rates versus K values for four validating tests, where each test used 20 different image samples.
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Figure 4b. Chilling injury detection rate versus K values for the same four validating tests shown in figure 4a.
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Table 2. Samples used for optimal K value tests.
Group Test Type of Cucumber Number

1 Test 1 Moderate and smooth good 20
Test 2 Severe and smooth good 20

2 Test 1 Slight and bumpy good 20
Test 2 Trace and bumpy good 20

In general, by choosing optimal K values, both the
representation and classification effects were properly
weighted for the testing samples. The small−set sample tests
can be considered a validating process before the training and
the testing process. Those image samples were called
validating image samples and were used to determine the
variable parameters (in our experiments, the optimal K value)
in the method before final application to the training and
testing processes.

The image samples used for these experiments are listed
in table 3. In the first experiment, 50 good smooth−skinned
cucumber images and 50 injured cucumber images (with
moderate and severe degrees of damage) were selected. From
among these, 20 good cucumber image samples and
20 injured samples were used for training and then tested
together with the remaining 60 samples. The total 100−sam-
ple testing results, shown in figure 5, were obtained by
choosing an optimal K value of 0.60. The result indicated that
the PCA method and the integrated PCA−FLD method
achieved a similar performance that was better that that of the
FLD method. Note that the sample classes used in the first
experiment were well separated. The solution was dominated
by the principal components. So the PCA method becomes
good at classifying data that are well distinguishable, and this
is consistent with the results of Kim et al. (2002a, 2002b). On
the other hand, for the FLD method, since FLD is intended
to maximize the Efld ratio shown in equation 5, which is small
in this case, it becomes unreliable and noise sensitive, and led
to the poor performance in this situation.

More challenging samples were trained and tested in the
second and third experiments, as listed in table 3. The
recognition results are shown in figures 6 and 7, respectively.
In the second experiment, 60 samples were used for training,
and the same samples were used for testing; therefore, the
recognition rates for both good and injured cucumbers were
high. In this case, the K value was set at 0.20. Since these two
classes had very similar spectral characteristics, the differen-
tiating information played a more important role in classifi−

Table 3. Samples used for the experiments.

Experiment Sample Type
Sample
Number

Training
Set

Testing
Set

1 Good smooth 50 20 50
Moderate 25 10 25

Severe 25 10 25

2 Good with bumpy skin 30 30 30
Trace 10 10 10
Slight 20 20 20

3 Good with bumpy skin 60 20 40
Trace and slight 40 10 30

Moderate and severe 20 10 10

cation. Therefore, the FLD solution showed better perfor-
mance than PCA. By using the FLD method, the defect rec-
ognition rate achieved 90%, and the good sample recognition
rate was 100%, which were, respectively, 5% and 2% higher
than those achieved with the PCA method.

In the last experiment, 40 samples were used for training,
and an additional 80 samples were tested. The samples were
diversified and covered all types of injured cucumbers
mentioned before. In this case, the K value was set at 0.20.
The integrated PCA−FLD method achieved recognition rates
of 93.3% for injured cucumbers and 88.3% for good
cucumbers. In all experiments, the integrated PCA−FLD
method achieved the best recognition results compared with
those of the other methods.

Table 4 summarizes the three methods discussed above.
All these methods are considered transformation−based
feature extraction methods. The original features are linearly
combined to produce new projected features at a lower
dimension. The new projected features compared with any
subset of the original features at the same dimension have a
better performance in some aspects. For instance, the new
projected features generated by the PCA method are good at
pattern representation and at differentiating obviously sepa-
rated patterns. For similar patterns, the FLD method
performs better for classification purposes. However, since
the distinguishing information between two classes in FLD
is more heavily weighted, FLD is more sensitive to noise and
is less stable than PCA. The integrated PCA−FLD method
overcomes the drawbacks of these two methods while it
preserves the advantages of both. Moreover, the new method
provides more flexibility in dealing with different sample
patterns by adjusting the K value properly.

79%
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Figure 5. Chilling injury detection rates and good cucumber recognition rates using FLD, PCA, and integrated FLD−PCA methods for the first experi-
ment, where 20 image samples were used for training and, together with another 80 image samples, were tested. The rates were calculated based on
the 100 total testing samples.
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Figure 6. Chilling injury detection rates and good cucumber recognition rates using FLD, PCA, and integrated FLD−PCA methods for the second ex-
periment, where 60 cucumber image samples were used as training samples and the same 60 image samples were tested.
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Figure 7. Chilling injury detection rates and good cucumber recognition rates using FLD, PCA, and integrated FLD−PCA methods for the third experi-
ment, where 40 image samples were used as training samples and another 80 image samples were used as testing samples. The rates were calculated
based on the 80 testing image samples only.

Table 4. Summary of three feature extraction methods.

Method Property Comments

PCA Linear transform, eigenvector−based Good representative, good for distinguished data classification.
FLD Linear transform, eigenvector−based Good for discrimination of similar data classification.

Integrated PCA−FLD Linear transform, eigenvector−based Good for both representation and discrimination; must choose proper K value.

CONCLUSIONS
In this study, we proposed a novel integrated PCA−FLD

method for hyperspectral feature extraction and applied it to
cucumber chilling injury detection. The integration process
was neither a simple combination of the two methods nor
used them sequentially during the entire procedure. The new
method was derived based on a constructed evaluation
equation that combined the representation and classification
effects together. Based on our sample data, better recognition
performance was achieved by using the new method.

We concluded that for hyperspectral band combination,
integrated effects of both representation and classification
should be taken into account. The principal components
preserved the most energy of the original data, and provided
good performance in recognizing obviously separated
classes. The discriminant analysis contributed to classifying
similar patterned classes. By properly adjusting the weight
factor (K), the integrated PCA−FLD method was more
flexible in processing different sample patterns, and the result

became robust with respect to noise. This method can be
extended to other hyperspectral imaging applications for
safety and quality inspections.
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