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Abstract 

Fractal scaling laws of water transport were found for soils. A water transport model is needed to describe this type of 
transport in soils. We have developed a water transport equation using the physical model of percolation clusters, employing 
the mass conservation law, and assuming that hydraulic conductivity is a product of a local component dependent on water 
content and a scaling component depending on the distance traveled. The model predicts scaling of water contents with a 
variable x/t v(2dJ) wherefl deviates from the zero value characteristic for the Richards equation. A change in the apparent water 
diffusivity with the distance is predicted if the apparent diffusivity is calculated using the Richards equation. An equation for 
the time and space invariant soil water diffusivity is obtained. Published data sets of five authors were used to test the scaling 
properties predicted by the model. The value offl was significantly greater than zero in almost all data sets and typically was in 
the range from 0.05 to 0.5. This exponent was found from regression equations that had correlation coefficients from 0.97 to 
0.995. In some cases a dependence offl on water content was found indicating changes in scaling as the water transport 
progressed. © 1998 Elsevier Science B.V. 
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1. Introduct ion 

Laws of scaling of many soil properties have been 
found to be scale-invariant, i.e. the dependence of a 
property on the scale is the same over a range of 
scales. Fractal scaling has been found appropriate to 
express such scale independence for collections of 
soil particles and aggregates (Bartoli et al., 1991; 
Niemeyer and Ahl, 1991; Perfect and Kay, 1995; 
Tyler and Wheatcraft, 1992; Young and Crawford, 
1991), microporosity and macroporosity (Bartoli 
et al., 1991; Brakensiek et al., 1992), soil pore 
surfaces (Sokolowska, 1989; Toledo et al., 1990), 
etc. In many aspects, soil is a fractal medium. 
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When the network of pores is fractal, transport in this 
network differs from the transport in the media with 
properties independent of scale. In particular, diffusion 
of solutes in a fractal pore network does not obey 
Fick's law, and the anomalous diffusion takes place 
instead (Gefen et al., 1983). When Fick's law is 
valid, the dependence of concentration on time t and 
distance x from the source of a solute can be expressed 
as a function of a single Boltzmann variable X 

x 
x= t~-5 (1) 

With anomalous diffusion, the dependence of con- 
centration on time and distance can also be expressed 
as a function of a single variable ~" 

x 
~- = -- (2) 

t n 
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where the exponent n can be both greater than and 
less than 0.5, depending on the fractal properties of 
the pore network where the transport occurs (Orbach, 
1986). When n > 0.5, the diffusion spreading increases 
as the solute propagates from the source. If one tries to 
calculate Fick's diffusion coefficient from data on 
different stages of anomalous diffusion with n > 0.5, 
an increase in the diffusion coefficient will be found as 
the anomalous diffusion progresses. On the contrary, 
diffusion spreading will gradually slow down when the 
anomalous diffusion obeys Eq. (2) with n < 0.5. In 
this case, Fick's diffusion coefficient will decrease 
with time or distance of spreading. Anomalous disper- 
sion of solutes has been observed in fractured rocks 
and is intensively studied in subsurface hydrology 
(Acuna and Yortsos, 1995; Neuman, 1990, 1995). 

The transport of soil water is more complex than 
solute diffusion in water saturated media, because the 
soil water diffusivity depends on soil water content. 
The soil water transport similar to anomalous diffu- 
sion has been observed in horizontal soil columns. 
Ferguson and Gardner (1963) suggested that the soil 
water diffusivity may be a function of distance or 
some other variable as well as water content. Rawlins 
and Gardner (1963) found that soil water diffusivity 
should be considered a function either of time or of 
distance. Guerrini and Swartzendruber (1992) have 
demonstrated that the diffusivity decreases as time 
increases and the decrease obeys the power law. 
They found a solution of the equation of water 
transport in unsaturated soil with time-dependent dif- 
fusivity. Later these authors suggested that a fractal 
Brownian motion can be a model for the soil water 
movement (Guerrini and Swartzendruber, 1994). 
Pachepsky et al. (1995) conjectured that the fractal 
structure of soil pore space might cause an anomalous 
diffusion in soils. 

The objectives of this work were to develop a 
model of soil water transport accounting for fractal 
pore networks, and to explore the extent the anoma- 
lous diffusion manifests itself in experiments on 
horizontal movement of water in soils. 

2. Theory 

We derive the equation of water transport in unsatu- 
rated fractal media following a derivation of  the 

saturated water transport equation in fractal media 
given by Yortsos (1990). One-dimensional transport 
will be considered below. We start with the mass 
conservation equation in the form 

O0 - - +  0q=0 (3) 
Ot Ox 

where 0 is the soil water content and q is the volume 
flow rate per unit area. We do not consider soil den- 
sity changes during the water transport. We assume 
that the water flux in soil is related to the pressure 
gradient according the Buckingham-Darcy law: 

Oh 
q= - k - -  (4) 

Ox 

where k is the unsaturated hydraulic conductivity and 
h is the hydraulic head. 

The physical model of transport in fractal media 
that is used in this paper is called a site percolation 
network (Orbach, 1986). This model has been used 
first to describe transport of water and oil in sand- 
stones and later was applied to transport phenomena 
in fractured media (Feder, 1988, p. 104; Yortsos, 
1990). The percolation network is created on a 
rectangular grid. Each intersection is occupied by 
water at random with some probability p. Sites are 
said to be connected if they are adjacent along the 
vertical or horizontal direction. Each particle of the 
moving material can move with a constant rate with 
steps of an elementary length that are random in direc- 
tion to adjacent sites of the infinite network. The 
remarkable property of this model is that the transport 
of an ensemble of the particles of the moving material 
follows the diffusion equation with the diffusion 
coefficient Dp dependent on the distance x from the 
starting point following the power law 

Dp ~ x ~ (5) 

Here exponent J3 shows how the path of a particle of 
the moving material will deviate from the free diffu- 
sion path because of the presence of fractal solid 
phase. The more irregular the path is, the larger is 
the value of ft. The exponent J3 can be negative in 
which case diffusion speeds up as the transport pro- 
gresses (Mandelbrot, 1983). 

Chang and Yortsos (cited in Yortsos, 1990) 
suggested that the power dependence on distance 
will hold for permeability of a fractured media in 
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the form: 

k = rex- ~ (6) 

where m is a local property of  the medium and expo- 
nent fl is the same as in Eq. (5) characteristic o f  the 
fractal percolation network where the transport 
occurs. 

We will assume that Eq. (6) is valid for a soil pro- 
vided that the local component o f  the hydraulic con- 
ductivity m is a function o f  the water content: 

m:m(O)  (7) 

Combining Eq. (3), Eq. (4), Eq. (6) and Eq. (7) in one 
equation, we obtain the equation o f  the one- 
dimensional water transport in unsaturated fractal 
porous medium: 

oo_ O_(x m(o)Oh ) (8) 
at ax \ ax ) 

We will focus on horizontal one-dimensional trans- 
port. In this case, the hydraulic head, h> is equal to 
soil matric potential, d/. Soil water diffusivity will be 
defined as usual 

D = k d• = m(O)x- ~ d~b dO ~ = G ( O ) x  e (9) 

where G(O) = m(O)(d~b/dO) is a local component o f  the 
soil water diffusivity. Then the equation o f  the hor- 
izontal water transport in unsaturated soil as in a 
fractal medium will be: 

O0_ O (x_BG(O)O_O0~ (10) 
at ox k ox / 

The presence o f  the independent variable in the 
hydraulic diffusivity term distinguishes this equation 
from the customary Richards' equation in which the 
diffusivity depends only on water content. Eq. [10] 
reduces to Richards' equation when fl = 0. 

An equation similar to Eq. (10) with G = const, was 
introduced and studied by O'Shaughnessy and 
Procaccia (1985) to describe diffusion on fractal 
objects. These authors found an analytical solution 
in which, for the one-dimensional case, the concentra- 
tion was a function of  the variable x t  -ll(2+fl). We will 
show now that the solution o f  the non-linear Eq. (1 O) 
for the water movement in a semi-infinite horizontal 
column is a function o f  the same variable. 

We consider Eq. (1 O) with the following boundary 

and initial conditions: 

O=Ob, x=O, t-->O 

O:Oi, x > O ,  t=O (11) 

Now we will use the general Boltzmann-type variable 
~" defined by Eq. (2). Assuming that 0 depends only 
on ~', we will have 

- .  0 . 00 
a t  ' 

(12) 
1 d i x O l 

Replacing partial derivatives in Eq. (10) with expres- 
sions from Eq. (12), we have: 

dO d { t I- 2n G 0 dO'~ 

(13) 
d i/tl-(2+~)" G 0 dO'~ 

I f  the exponent n is related to fl as 

1 
n = - -  (14) 

2+~ 

then Eq. (13) reduces to: 

d ~ dO , 

2 + 13 d (  = 

This equation has to be solved with the boundary 
conditions 

0(0) = 0b, 

0(~) = Oi (16) 

which follow from Eq. (11). When the pore space 
does not exhibit fractal properties, n = 0.5, ~-= k 
and Eq. (15) coincides with the well-known conse- 
quence o f  the Richards' equation (Philip, 1955). 

Thus, ifEq. (10) is valid, water content will depend 
solely on the variable ~" = x t  -11(2+]3) during flow in a 
semi-infinite horizontal column: 

 17, 0=0  0 x 

t2~-~ 

Note that a result equivalent to Eq. (17) was obtained 
earlier by Guerrini and Swartzendmber (1992) who 
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Fig. 1. Distance to the wetting front as a function on time in 
experiments of Gardner and Widtsoe (1921). 

assumed the soil water diffusivity to be a product o f  a 
function o f  water content and an inverse power func- 
tion of  time. 

Transport properties o f  the fractal media  character- 
ized by Eq. (10) are defined by the parameterf l  and by 
the function G(O). The most convenient relationship to 
find values o f f l  is a corollary o f  Eq. (17) in the form 

x :  f(0)t" (18) 

Here ~0)  is the inverse function to 0(~-) and n depends 
on f l  according to Eq. (14). The "Mater ia ls  and 
methods"  section below presents techniques of  
using Eq. (18) to find a value for f l  from various 
types o f  data on water transport in horizontal soil 
columns. I f  the value o f f l  is known, the local com- 
ponent o f  the diffusivity, G(O) can be found using an 
integral of  Eq. (15): 

G(O)= - 2 ~ d ~ d  O I OiO~dO (19) 

where 0i is the initial water content. Wi th f l  = 0, when 
D = G(0), this equation reduces to the known conse- 
quence o f  the Richards '  equation (Philip, 1955): 

D(O)= - l d~-~ O l OiO~kdO (20) 

To find the function G(O) when the dependence o f  0 
of  ~" is known, one can solve Eq. (19) numerical ly 
using the technique proposed by Philip (1955) to 
solve Eq. (20). 

3. Materials and methods 

We used published data on water transport in a 
horizontal soil column to test the applicabil i ty o f  
Eq. (17) and Eq. (18) and to find values of  the para- 

meterf l .  
Data from two publications related the distance to 

wetting front to the t ime o f  observations. Gardner and 
Widtsoe (1921) studied the transport of  water, and 
Nielsen et al. (1962) studied transport o f  water and 
oil in soil. Air-dry soil was packed in columns. A 
negative pressure was held constant at one o f  the 
columns '  end. The largest distance where the wetting 
front was observed was 50 cm. Positions o f  the 
wetting front were measured visually. 

To test the applicabil i ty  o f  Eq. (18) with data on 
wetting front advance, we plotted distance-on-time 
dependencies in log-log scale. The exponent n in 
Eq. (18) was then a slope o f  the regression line log x 
on log t. Figs 1 and 2 show plots o f  data from papers 
o f  Gardner and Widtsoe (1921) and Nielsen et al. 
(1962), respectively. 

Rawlins and Gardner (1963) studied movement  o f  
water in horizontal soil columns using gamma ray 

xf, cm 

100 

10 4 10 o 101 10 2 10 3 10 4 10 s 

tf, min 

Fig. 2. Distance to the wetting front as a function on time in 
experiments of Nielsen et al. (1962); O, Columbia silt loam wet 
at -50 mb; U], Columbia silt loam wet at -100 mb; O, Columbia 
silt loam wet with oil at -2 rob; I ,  Columbia silt loam wet with oil 
at -38 mb; A, Hesperia sandy loam wet at -2 mb; V, Hesperia 
sandy loam wet at -50 mb; O, Hesperia sandy loam wet at 
-100 mb. 
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Fig. 3. Distance-on-time dependencies for several volumetric water 
contents 0 in experiments on water movement in horizontal soil 
column, from work of Rawlins and Gardner (1963). 

attenuation. The largest distance where the water con- 
tent was measured was 40 cm. They presented data on 
the dependence of the distance at which a particular 
water content had been reached on time when this 
water content is reached. To test applicability of Eq. 
(18) with these data, we plotted distance-on-time 
dependencies in log- log  scale for several water con- 
tents. Fig. 3 shows these plots. The exponent n in Eq. 
(18) was then a slope of the regression line log x on 
log t calculated for each water content separately. 

Ferguson and Gardner (1963) studied movement of 
water in air-dry soil using gamma ray attenuation. The 
largest distance where the water content was 
measured was 27.5 cm. They presented dependencies 
of water content on time for several distances from the 
inlet. To use this data in testing Eq. (18), we fitted 
regression equation 

b 
t = a +  - -  

( c - O )  d 

to time moisture curves for each of the observation 
distances separately. Fig. 4(a) shows the measured 
data and the regression curves. After that we took a 
set of  water content values 0.05, 0.10, ..., 0.40, and 
calculated the time when these water contents were 
reached for each observation distance. Dis tance- t ime 
data points were plotted in log- log  coordinates as 
shown in Fig. 4(b). The exponent n has been found 
separately for each water content as a slope of regres- 
sion of logx on log t. The largest value of water 
content (0.40) was selected to provide at least three 
distances at which the water content was reached. 

Smiles et al. (1978) studied movement of water and 
solutes in sand-kaolini te  mixtures. They carried out 
their set A of experiments with distilled water, set B 
with 10 -3 kg L -] solution of KC1, and set C with 
10 -2 kg L -] solution of KC1. The largest observation 
distance was 22 cm. The authors presented dependen- 
cies of water content on the Boltzmann variable 
found at three observation times. To use these data, 
we fitted their dependencies of k on water content 
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Fig. 4. Water movement in a horizontal soil column in experiments of Ferguson and Gardner (1963); (a) time of reaching various water 
contents at several distances from the source; (b) distance-on-time dependencies for several volumetric water contents 0. 
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Fig. 5. Water movement in horizontal soil columns in experiments of  Smiles et al. (1978); (a) Boltzmann variable X as related to water 
contents at 1800s (+, O, • ) ,  at 7200s (X, D, EE) and at 28800s  ( = ,  A, &) in data sets A (+ ,x ,  = ) , B  (O, U], A) a n d C  ( • ,  EE, A), 
respectively; (b) (c) and (d) Boltzmann variable as a function of  time at volumetric water contents 0.06, 0.08 . . . . .  0.20 from data sets A, B and 
C, respectively. 

with cubic regression separately for each observation 
time. Fig. 5(a) shows the data and the regression 
curves. Then we selected a set o f  water contents 
0.06, 0.08 . . . . .  0.20, found values of  X from the regres- 
sion equations and plotted dependencies o f  X on 

observation times for these water contents. These 
plots are shown in Fig. 5(b-d)  for the three sets of  
experiments. To find the exponent n in Eq. (18), we 
calculated linear regressions log (X) = A - B log (t) for 
each water content. Since by definition log (X) = log (x) 

Table 1 

Values of  parameters n and fl found from data on horizontal movement of  water to soil columns 

Data source Soil n (mean fl  Graph 
_+ standard error) 

Gardner and 
Widtsoe (1921) 
Nielsen et al. (1962) 

Rawlins and 
Gardner (1963) 

Ferguson and 
Gardner (1963) 

Name and texture not reported 
Columbia silt loam wet at -50  mb 
Columbia silt loam wet at -100 mb 
Columbia silt loam wet with oil at -2  mb 
Columbia silt loam wet with oil at -38 mb 
Hesperia sandy loam at - 2  mb 
Hesperia sandy loam at -50  mb 
Hesperia sandy loam wet at -100 mb 
Salkum silty clay loam, 0 = 0.51 
Salkum silty clay loam, 0 = 0.50 
Salkum silty clay loam, 0 = 0.48 
Salkum silty clay loam, 0 = 0.45 
Salkum silty clay loam, 0 - 0.40 
Salkum silty clay loam, 0 = 0.05 
Salkum silty clay loam, 0 = 0.05 
Salkum silty clay loam, 0 = 0.10 
Salkum silty clay loam, 0 = 0.15 
Salkum silty clay loam, 0 - 0.20 
Salkum silty clay loam, 0 = 0.25 
Salkum silty clay loam, 0 = 0.30 
Salkum silty clay loam, 0 = 0.35 
Salkum silty clay loam, 0 = 0.40 

0.417 +_ 0.006 0.398 Fig. 1 
0.402 +_ 0.003 0.488 Fig. 2, O 
0.425 _+ 0.006 0.353 Fig. 2, [] 
0.480 _+ 0.008 0.083 Fig. 2, • 
0.440 _+ 0.003 0.273 Fig. 2, • 
0.440 _+_ 0.004 0.273 Fig. 2, A 
0.384 _+ 0.002 0.604 Fig. 2, V 
0.344 _+ 0.003 0.907 Fig. 2, © 
0.439 _+ 0.007 0.278 Fig. 3 
0.430 _+ 0.008 0.326 Fig. 3 
0.437 _+ 0.011 0.288 Fig. 3 
0.467 _+ 0.009 0.141 Fig. 3 
0.479 _+ 0.003 0.088 Fig. 3 
0.461 + 0.002 0.169 Fig. 3 
0.454 _+ 0.002 0.203 Fig, 4(b) 
0.453 _+ 0.002 0.208 Fig. 4(b) 
0.452 _+ 0.003 0.212 Fig, 4(b) 
0.452 _+ 0.003 0.212 Fig, 4(b) 
0.452 +_ 0.003 0.212 Fig. 4(b) 
0.454 _+ 0.003 0.203 Fig. 4(b) 
0.458 _+ 0.004 0.183 Fig. 4(b) 
0.465 _+ 0.006 0.151 Fig, 4(b) 
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Table 2 

Values of  parameters n andf l  found from data on horizontal movement  of  water to columns with kaolinite sand mixtures in experiments of  
Smiles et al. (1978) 

Volumetric Set A Set B Set C 
water  content 

," p n J3 n 

0.06 0.455 + 0.001 0.198 0.507 ± 0.000 - 0.027 0.480 _+ 0.003 0.083 

0.08 0.458 ± 0.005 0.183 0.512 +_ 0.001 0.047 0.483 _+ 0.004 0.070 

0.10 0.459 + 0.007 0.179 0.516 + 0.001 - 0.062 0.485 _+ 0.004 0.062 

0.12 0.459 _+ 0.009 0.179 0.519 _+ 0.001 - 0.073 0.484 ± 0.004 0.066 

0.14 0.457 ± 0.009 0.188 0.522 + 0.001 0.083 0.488 _+ 0.005 0.049 

0.16 0.453 _+ 0.007 0.208 0.525 _+ 0.000 - 0.096 0.489 _+ 0.006 0.045 

0.18 0.444 ± 0.004 0.252 0.531 ± 0.001 - 0.115 0.490 ± 0.008 0.041 

0.20 0.429 ± 0.003 0.331 0.540 ± 0.001 - 0.147 0.490 _+ 0.008 0.041 

a Mean _+ standard error. 

- 0.5 log (t), we could express log (x) as a function o f  
log (t) in the form 

log(x) = (0.5 - B)log(t) + A 

Comparison o f  this equation with Eq. (18) shows that 
the exponent n can be found as n = 0.5 - B. 

Al l  data points were obtained by digitizing graphs 
found in the publications. The digitizing was made in 
triplicate. Coefficient of  variation within the replica- 
tions did not exceed 0.1%. 

4. Results and discussion 

Values o f  parameters n with standard errors and 
values o f f l  estimated from mean n values are pre- 
sented in Table 1 for soil columns, and in Table 2 
for kao l in i t e - sand  mixtures. Linear regression 
equations used to find the value o f  n had correlation 
coefficients equal to 0.99 in Fig. 1, not less than 0.995 
in Figs 2, 3 and 4 and not less than 0.97 in Fig. 5. 

Values o f  n were significantly different from 0.5 in 
almost all data sets that we considered except experi- 
ments o f  Smiles et al. (1978) with kao l in i t e - sand  
mixtures (set C at water contents o f  0.18 and 0.20). 
There was no clear trend in change o f  values of  n and 

f l  with water content. For example, whereas Columbia 
silt loam wetted with water showed a decrease in n as 
the water content increased, Hesperia sandy loam 
demonstrated a drastic increase in n along with an 
increase in water content. There was a decrease in 
values o f  n followed by an increase as water content 

o f  Salkum silty loam decreased from 0.51 to 0.05 in 
experiments o f  Rawlins and Gardner (1963). The 
values o f  n were remarkably stable in the same soil 
as the water content varied in the wide range studied 
by Ferguson and Gardner (1963). The kaol in i te -sand  
mixtures o f  Smiles et al. (1978) showed the opposite 
apparent trends in changes o fn  with the water content. 
There was a decrease in the value of  n in data set A, 
and an increase in the value o f  n in data sets B and 
especial ly C, as water content changed from 0.06 to 
0.20. Kao l in i t e - sand  mixture o f  the data set B was the 
only data set with values o f  n greater than 0.5 and 
negative values of  ft. Here diffusivity increased as 
water moved along the column. 

Small deviations o f  the value o f n  from 0.5 result in 
relat ively large differences in values offl.  Values of f l  
that we found mostly ranged between 0 and 0.4. In 
two cases for the Hesperia sandy loam we had values 
greater than 0.5. Our values off l  were less than 0.8 and 
1.5 for two-dimensional and three-dimensional perco- 
lation clusters, respectively. It is not surprising since 
the water movement  in cylindric samples is confined 
and the wandering opportunities of  particles are 
restricted. Nevertheless,  since the geometrical  con- 
straints o f  the medium hinder the motion of  particles, 
the propagation o f  the diffusion front is slowed 
(Giona, 1992). 

Although the percolation cluster model  represents a 
good physical  model  to simulate and interpret anom- 
alous diffusion, it is not the only model  useful for this 
purpose (Roman et al., 1989). The critical feature 
required for the occurrence of  non-Fickian behavior 
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is a memory of the particle (Kinzelbach, 1987). 
Uncorrelated consecutive steps of a particle reflect 
the situation where the correlation length is smaller 
than the step length. This assumption has been used to 
derive the Richards' equation from basic principles 
of statistical mechanics (Bhattacharya et al., 1976). 
Non-Fickian behavior occurs when the length of 
the fluid path is on the same order as or smaller 
than the range of spatial correlation of inhomo- 
genities. In this case a correlation between successive 
dispersive steps occurs. The anomalous diffusion may 
also have non-fractal interpretation. Guerrini and 
Swartzendruber (1992) found that the scaling given 
by Eq. (17), applicable in soils where the transport 
coefficient in the water transport equation depends 
on water content and time, decreases as a power of 
time. These authors have related the time-dependence 
to the accumulation of bulk density invariant changes 
in microstructure that can alter the geometry of the 
pore space. 

Although Eq. (17) and Eq. (18) are consequences of 
the properties of Eq. (10), the validity of these equa- 
tions does not prove the validity of Eq. (10). Testing 
Eq. (10) with other boundary conditions is needed to 
prove its applicability. 

For the same soil water content, values of the soil 
water diffusivity decreased as the distance from the 
source increased (set B of Smiles et al., 1978, was the 
only exception). A study of solute dispersion in 
saturated geologic media by Neuman (1990) demon- 
strated an increase in solute dispersivities as the scale 
increased. This should not be viewed as a contra- 
diction. There is no straightforward physical ana- 
logy between solute transport in saturated pore 
space and water transport in unsaturated pore space 
For any scale selected, the diffusivity as used in Eq. 
(10) remains a local property changing along the 
direction of the water movement, whereas the disper- 
sivity is a single value associated with a particular 
scale. 

The spatial arrangement of particles in soils has 
been successfully described using mass, volume, and 
surface fractal dimensions (Bartoli et al., 1991; Per- 
fect and Kay, 1995). These dimensions, however, may 
not be relevant in estimating values offl. The value of 
fl is related to the scaling of pore connectivity which 
does not have a direct relationship with mass or 
volume fractal dimensions. Lemaitre and Adler 

(1990) studied saturated viscous flows through two 
Menger sponges having similar fractal dimensions 
and found quite different water transport properties 
in these sponges. To estimate soil hydraulic conduc- 
tivity, Crawford (1994) has suggested using the values 
of both the mass fractal dimension and the spectral 
dimension which is directly related toil. 

Significantly different values of n andfl were found 
for the same kaolinite-sand mixture in experiments 
A, B and C of Smiles et al. (1978). We hypothesized 
that the differences could be caused by different initial 
concentrations of KCI used to saturate samples which 
might result in a different rearrangement of particles 
within samples caused by the dispersion of clay 
material. The pore connectivity in data set B seemed 
to be better than in data sets A and C. 

Since the connectivity of water-filled pores may be 
different at different water contents, there is no reason 
why the value offl should be constant over the range 
of water contents. The value offl  was approximately 
constant over a range of water contents in some of the 
cases. However, fl was increasing drastically as the 
water content in Hesperia sandy loam decreased. 

log(x) 

o2 
03-J 

a 1 / f  
J / 

f f  f /  

f 
log(t) 

Fig. 6. lsomoisture lines in the log (x) - log (t) plane; (a) increase 
in slopes with the increase in moisture content; (b) hypothetic 
convergence of the isomoisture lines to the line of Fick scaling. 
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The light texture o f  this soil may  be a reason o f  
changes in a connect iv i ty  as the soil water  pressure 
has dropped from - 2  to - 1 0 0  mb. Eq. (10) may  still be 
valid but  the solut ion in the form o f  Eq. (17) wil l  not  
be appl icable  anymore .  

The increase o f f l  with 0 can not  cont inue  indefi- 
ni te ly  as water  m o v e m e n t  progresses. A n  example  for 
three water  contents  0~ < 02 < 03 is shown in Fig. 
6(a). Each straight l ine in this figure has the equat ion 
log (x) = n(0) log (t) + b(O) where both the slope n and 
the intercept b depend on 0. Since the slope n 
decreases as f l  increases, the straight lines drawn for 
different values  o f  0 have to intersect eventua l ly  
which means  a non-phys ica l  step-wise j u m p  in 
water  content  at the intersect ion point.  The increase 
in J3(O) that can be traced, for example,  for Hesperia  
sandy loam is probably  a p h e n o m e n o n  specific for the 
observed region o f  the log (x) - log (t) plane. We  
hypothesized that in a broader  region we would  see 
a convergence  o f  all the isomoisture  l ines to the l ine 
with n = 0.5 corresponding to F ick ' s  diffusion as 
shown in Fig. 6(b). This  hypothesis  is based on the 
idea o f  soil be ing  fractal over  a finite scale (corre- 
lat ion length) and the appl icabi l i ty  o f  a classical 
descript ion at larger scales (Yortsos, 1990). Some 
evidence  support ing this hypothesis  can be found in 
data of  Fig. 5(b and d). The slopes of  lines that would  
connect  the second and the third data point  for each 
water content  seem to be smaller  than slopes of  
straight l ines that would  connect  the first and the 
second points.  The eventual  change of  isomoisture  
lines to l ines having the slope 0.5 may  be also true 
for the case o f  n independent  o f  water  content ,  and 
that may  l imit  the appl icabi l i ty  o f  Eq. (17). The 
change of  type o f  diffusion ma y  not  necessar i ly  be 
related to the scale. Gr inrod and Impey (1993) s imu-  
lated solute transport  in saturated two-d imens iona l  
fractal porous m e d i u m  and found that at early stages 
an anomalous  transport  occurs, whereas the later 
breakthrough is p redominan t ly  Fickian.  Changes  of  
the diffusivi ty scaling as the water  transport  in soil 
progresses seem to be an interest ing issue to explore. 
Another  interest ing topic is the scal ing law for the 
vertical  m o v e m e n t  when  the gravity as an external 
force is applied. General  considerat ions  o f  R o m a n  
et al. (1989) imply  that the scaling variable  ~" from 
Eq. (2) or Eq. (18) should be in this case replaced 
by the scal ing variable x/log (t). 

References 

Acuna, J.A., Yortsos, Y.C., 1995. Application of fractal geometry 
to the study of networks of fractures and their pressure transi- 
ent, Water Resour. Res., 31,527. 

Bartoli, F., Phylippy, R., Doirisse, M., Niquet, S., Dubuit, M., 
1991. Structure and self-similarity in silty and sandy soils: 
the fractal approach, J. Soil Sci., 42, 167 185. 

Bhattacharya, R.N., Gupta, V.K., Sposito, G., 1976, A Markovian 
stochastic basis for the transport of water through unsaturated 
soil, Soil Sci. Soe. Amer. J., 40, 465-467. 

Brakensiek, D.L., Rawls, W.J., Logsdon, S.D., Edwards, W.M., 
1992. Fractal description of macroporosity, Soil Sei. Soc. 
Amer. J., 56, 1721-1723. 

Crawford, J.W., 1994. The relationship between structure and the 
hydraulic conductivity of soil, European J. Soil Sci., 45, 493- 
501. 

Feder, J., 1988. Fractals. Plenum Press, New York. 
Ferguson, H., Gardner, W.R., 1963. Diffusion theory applied to 

water flow data obrained using gamma ray absorption, Soil 
Sci. Soc. Amer. Proc., 27, 243 246. 

Gardner, W., Widtsoe, J.A., 1921. The movement of soil moisture, 
Soil Sci., 11,215-233. 

Gefen, Y., Aharony, A., Alexander, S., 1983. Anomalous diffusion 
on percolating clusters, Phys. Rev. Lett., 50, 77-80. 

Giona, M., 1992. IFS-simulation of transport phenomena on com- 
plex fractal media, Molecular Simulation, 8, 265-271. 

Grinrod, P., Impey, M.D., 1993. Channeling and Fickian dispersion 
in fractal simulated porous media, Water Resour. Res., 29, 
4077 4089. 

Guerrini, 1.A., Swartzendruber, D., 1992. Soil water diffusivity as 
explicitly dependent on both time and water content, Soil Sci. 
Soc. Amer. J., 56, 335-340. 

Guerrini, I.A., Swartzendruber, D., 1994. Fractal characteristics of 
the horizontal movement of water in soils, Fractals, 2, 465 
468. 

Kinzelbach, W., 1987. Numerische Methoden zur Modelierung des 
Schadstofftransports im Grundwasser. Oldenburg Verlaf, M 
finchen. 

Lemaitre, R., Adler, P.M., 1990. Fractal porous media IV: three- 
dimensional Stokes flow through random media and regular 
fractals, Transport in Porous Media, 5, 325 340. 

Mandelbrot, B.B., 1983. Fractal Geometry of Nature. W.H. 
Freeman, New York. 

Neuman, S.P., 1990. Universal scaling of hydraulic conductivities 
and dispersivities in geologic media, Water Resour. Res., 26, 
1749 1758. 

Neuman, S.P., 1995. On advective transport in fractal permeability 
and velocity fields, Water Resour. Res., 31, 1455. 

Nielsen, D.R., Biggar, J.W., Davidson, J.M., 1962. Experimental 
consideration of diffusion analysis in unsaturated flow problem, 
Soil Sci. Soc. Am. Proc., 26, 107-111. 

Niemeyer, J., Ahl, C., 1991. Die Fractale Verteilung der Minerale 
und deren Bedeutung fur die Sorption, Mitt. Dtsch. Bodenk. 
Ges., 66, 217-274. 

Orbach, R., 1986. Dynamics of fractal networks, Science, 231, 
814-819. 



E Pachepsky, D. Timlin/Journal of Itydrology 204 (1998) 98 107 107 

O'Shaughnessy, B., Procaccia, I., 1985. Analytical solutions for 
diffusion on fractal objects, Phys. Rev. Lett., 54, 455-458. 

Pachepsky, Ya.A., Polubesova, T.A., Hajnos, M., Sokolowska, Z., 
Jouzefaciuk, G., 1995. Fractal parameters of pore surface area 
as influenced by simulated soil degradation, Soil Sci. Soc. 
Amer. J., 59, 58-65. 

Perfect, E., Kay, B.D., 1995. Application of fractals in soil and 
tillage research: a review, Soil Tillage Res., 36, 1-20. 

Philip, J.R., 1955. Numerical solution of equations of the diffusion 
type with diffusivity concentration-dependent, Trans. Faraday 
Soc., 51, 885-892. 

Rawlins, S.L., Gardner, W.H., 1963. A test of the validity of the 
diffusion equation for unsaturated flow of soil water, Soil Sci. 
Soc. Amer. Proc., 27, 507-511. 

Roman, H.E., Bunde, A., Havlin, S., 1989. Anomalous transport on 
random fractal structures: stretched Gaussians, power-laws, and 
logarithmic time dependencies, Berichte der Bunsen- 
gesellschaft, Phys. Chem.; 93, 1205-1208. 

Smiles, D.E., Philip, J.R., Knight, J.H., Elrick, D.E., 1978. 

Hydrodynamic dispersion during adsorption of water by soil, 
Soil Sci. Soc. Am. J., 42, 229 234. 

Sokolowska, Z., 1989. On the role of energetic and geometric 
heterogeneity in sorption of water vapor by soils: application 
of a fractal approach, Geoderma, 45, 251-265. 

Toledo, P.G., Novy, R.A., Davis, H.T., Scriven, L.E., 1990. 
Hydraulic conductivity of porous media at low water content, 
Soil Sci. Soc. Am. J., 54, 673 679. 

Tyler, S.W., Wheatcraft, S.W., 1992. Fractal scaling of soil 
particle-size distributions: analysis and limitations, Soil Sci. 
Soc. Am. J., 56, 362 369. 

Yortsos, Y.C., 1990. Heterogeneity description using fractal con- 
cepts. In: Modeling and applications of transport phenomena in 
porous media. Rhode Saits Gen~se, Von Karman Institute for 
Fluid Dynamics, pp. 1 35. 

Young, I.M., Crawford, J.W., 1991. The fractal structure of soil 
aggregates: its measurement and interpretation, Soil Sci., 42, 
187-198. 


