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13 A Mix of Scales: Topography,
Point Samples and Yield Maps

D.J. Timlin, Y.A. Pachepsky, and C.L. Walthall
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1. INTRODUCTION

Agricultural land management has requirements for many kinds of data, including information on
soil hydraulic properties, soil texture, terrain attributes, and crop cover. The sources of these data
are varied and range from manual collection of sparse point samples to acquisition of highly dense
remotely sensed soil and crop canopy reflectance, and yield monitor data. Samples collected to
characterize soil properties, however, are often collected manually and are likely to be discontinuous
and represent localized sites and small scales. Elevation and topographic parameters may be useful
to help interpolate discontinuous values of soil properties because they provide a more or less
continuous distribution of measurements over large areas and usually represent a range in scales.?
Terrain indices have also been shown to be related to moisture distributions in soils.3#

Soil texture or water holding capacity data collected as point samples may provide an adequate
statistical representation of a local variable but there may not be enough data to accurately represent
the overall pattern of variability in order to map the data. Terrain attributes such as soil surface
curvature, slope and elevation are related to soil texture, soil water content and crop yields.> Slope
and soil surface curvatures have been shown to be good predictors of distributions of soil texture
in the landscape.”!* Elevation can be easily measured and generally has a reasonably continuous
variance over space in agricultural fields. By relating soil water holding capacity to topographic
variables it may be possible to interpolate sparse samples of soil water holding capacity.!® Thus
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228 Scaling Methods in Soil Physics

one could obtain a more accurate distribution of soil water holding capacity than from interpolation
of the measured variables alone.

Regression analysis is commonly used to develop predictive equations for interpolation or
to explain variability in terms of known variables. Regression is commonly used to develop
pedotransfer functions to relate easily measured soil attributes to soil hydraulic properties.!!1?
The measured variables are often not collected with spatial information and are assumed to be
independent. When ordinary least squares regression (OLS) is used on data that are spatially
autocorrelated, the standard errors can be underestimated, tests of significance overinflated,'> and
prediction errors large.'* Spatial autoregression can be a useful tool for quantifying large scale
measurements, terrain variables, and point measurements where spatial autocorrelation exists.!*!
Knowledge of spatial relationships can be used to "fill in" or interpolate sparse measurements
of soil properties. Redundant information in the variables and local variances can be exploited
to make better estimates.

Previous research at the site studied in this chapter’ reported that the strongest relationship
between soil water retention and topographic variables was observed at capillary pressures of 10
and 33 kPa, i.e., in the range where the soil reaches its “field capacity.” Because the water content
at 15 MPa (wilting point) did not vary substantially, the study proposed that the water holding
capacity depended on landscape position and these available water holding capacities predicted
from terrain variables could be used as interpretive attributes for yield maps in precision agriculture.

The objective of this study was to characterize soil water holding capacity (WHC) at the field
scale using topographic variables as predictors and applying a spatial autoregressive response model
to account for spatial dependence of the water holding capacities on terrain attributes. Several scales
of interpolation of the elevation data were used to investigate the effect of interpolated DEM (digital
elevation model) grid size on the relationship between calculated terrain variables and WHC. The
spatially estimated water holding capacities were compared to measured yields to determine their
usefulness as interpretive attributes for precision agriculture.

1. ANALYSIS OF DATA FROM VARIOUS SOURCES

A. SITE DESCRIPTION

The experimental site was a 6-ha corn field located on the USDA, Henry A. Wallace Beltsville
Agricultural Research Center in Beltsville, Maryland. The data set described here was collected
during the growing seasons of 1997 and 1998. The investigation carried out on this field is part of
a larger study entitled Optimizing Production Inputs for Economic and Environmental Enhancement
(OPE3). The OPE3 project is addressing: 1) watershed scale fluxes of chemical inputs and biological
agents from conventional, precision, and sustainable farming practices, 2) environmental impact
of chemical inputs and biological agents on a wooded riparian wetland, 3) development of remotely
sensed data products and analytical techniques for measuring and managing the spatial variability
of crops and soils, and 4) long-term economic and environmental impacts and tradeoffs of precision
and sustainable agricultural production practices.

The study site has a gentle slope running from the northwest part of the site to southeast with
an elevation difference of approximately 4 m (Figure 13.1). Sandy loam soils predominate with
silt and clay contents increasing down slope. The corn was planted north to south in 0.74-m wide
rows. At the time of the data collection there were no known major pest infestations. The yields
were recorded using an Agleader 2000 yield monitor (Ag Leader Technology, Ames, Iowa).

A topographic survey of the site was obtained from a total of 555 photogrammetric mass points
from airborne stereophotography (Air Survey Corp., Virginia). The average mass of sampled points
was about one measurement per 140 m?. Elevation values were obtained from a digital elevation

.model constructed by interpolation of the photogrammetric points’ data to nodes of various grid
sizes that ranged from 5 X 5 m to 55 x 55 m. The interpolation method of minimum curvature in
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FIGURE 13.1 Elevation map of study site showing locations of transects, grid sampling locations, and field
boundary.

Surfer (Golden Software, Golden, Colorado) was used to interpolate the grids. The method of
minimum curvature was reported to give good results based on comparisons among five commonly
used interpolation methods.”

Values of maximum slope, profile curvature and tangential curvature were used as topographic
attributes for the study area. Profile curvature is defined as curvature of the surface cross section
made in the direction of maximum slope. This is the uphill rate of change in slope. Negative
(positive) values of profile curvature indicate convex (concave) flow paths where a surface flow
accelerates (slows down). Tangential curvature is defined as curvature of the vertical surface cross
section made perpendicular to the direction of maximum slope. Negative (positive) values of
tangential curvature represent areas of divergent (convergent) flow.!® Equations for calculation of
the terrain parameters are given in Pachepsky et al.”

Soil was sampled along four transects positioned in different landscape elements (i.e., along
slopes and at foot slopes) and at nodes of a 30- X —30-m grid as shown in Figure 13.1 . The sampling
locations were 2 m apart within each transect. All samples were taken in duplicate from points 30
cm apart. There were 54 duplicated transect samples and 39 duplicated grid samples. Sampling
depth was 4 to 10 cm. The same topographic variables were assigned to the duplicated samples.

A transect sampling scheme was used to provide detailed information on changes in soil
properties along a gradient of slope, which would not have been possible with more widely spaced
samples. However, the transects have been augmented by grid samples that provide a (pseudo)
nested sampling structure.

B. SPATIAL AUTOREGRESSION

The regressions were carried out using a spatial autoregressive response model. A more complete
description of autoregressive models applied to spatial data can be found in References 13 and 17
through 19. In ordinary least squares regression, the dependent variable is a function of the
independent variable as Y = XJ + € where Y and X are n x I vectors, B is a I x k +1 vector of
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coefficients and € is error with mean of 0 and ¢? = constant. There are n observations(dependent,
Y) and k predictors (independent, X). If Y or X exhibit spatial autocorrelation, then they must be
corrected for values of X or Y at nearby locations. Because the data are collected on a two-
dimensional grid, a value of X or Y at a lag of i — / cannot be used to correct for autocorrelation
as it can for a one-dimensional series of data. Instead, a connectivity matrix D is used.!®?° The
autoregressive model becomes:

Y-OCDY=BO+X1[31+XZBZ+X3[33 +€ (13.1)

The value o is the autoregressive parameter and lies between O and 1. It is assumed here that
o is a constant for the field. This may or may not be appropriate but is a good first approximation.
The connectivity matrix, D, is an n X n weighting matrix with 0 on the diagonal so that only
neighboring values and not the value itself are used for predictions. The independent variables are
the three terrain attributes (slope, profile curvature and tangential curvature). The error, g, is
distributed as € ~ N(0,0%I). We used an n X n connectivity matrix (D) described in Pace and Barry.!?
The properties of this matrix are 1) the diagonals are zero, and 2) the rows sum to one. The strength
of the connection is related to distance between points and does not require uniform separation
distances and can thus accommodate nonuniform grid spacings.

Figure 13.2 shows the relationship between a 3 % 3 grid (A) with equally spaced cells and the
spatial weights (B) calculated by the nearest neighbor method. For example, the first row of the
adjusted Y (aDY), Y,,, would be calculated as a0.5Y, + 00.5Y,. This is a two-dimensional analog
of a time series model where the current Y value is adjusted for past values. The spatial connectivity
matrix adjusts the Y value for its neighbors.

The autoregressive parameter, o, is solved using maximum likelihood computations.!® The
profile likelihood function is defined as:

L(Bo,g>)=C + ln!I-ocDI-(Z)ln(SSE) (13.2)

where C is a constant and In|l — aD) is the log determinant. The SSE is the sum of squared errors:
SSE =(Y-aDY-XB)" (Y-aDY - XB) (13.3)

where T denotes transpose of the matrix and B_, is an n x I vector of coefficients B, — B; in
Equation 13.1). An efficient and rapid method to evaluate the maximum of the profile likelihood
function and hence solve for o and 3 was used here.!® The log determinant, /n|/ — a.D), is calculated
for a number (usually 100) of values of o and then a lookup table is used to find the minimum of
L in Equation 13.2. Matlab (The Mathworks, Natick, Massachusetts) programs from the Spatial-
ToolBox, v1.1* were used to perform the calculations. The SpatialToolBox function FPAR1 was
used to compute the spatial autoregression.

After o was determined, the error sums of squares for o were then calculated. Spatially adjusted
values of Y (WHC) were calculated by subtracting «DY from Y. These adjusted Y values (Y,) were
next used in an OLS regression with the topographic variables (X; — X;). The sums of squares for
o were calculated by subtracting the total sums of squares for the OLS [Y, — mean (Y,)] from the
total sums of squares for the AR model [Y — mean(Y)]. Next, the sums of squares for the OLS
regression were obtained by subtracting the error sums of squares for the OLS (Y, - y,) from the
total sums of squares for OLS [Y, — mean(Y,)].

* Spatial Statistics Toolbox 1.1. R. K. Pace and R. Barry, available at: http:\\spatial-statistics.com
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FIGURE 13.2 Representation of the spatial weighting matrix (D) for a 3 x 3 grid. The weights sum to 1 in
the rows. The Spatial Statistics Toolbox, v1.1 was used to obtain the weights.

1. Regression Methodology

As described above, terrain variables (slope and curvature) were calculated from the measured
elevation data that were interpolated to different sizes of regular grids (5 X 5 m to 55 X 55 m). The
calculated terrain variables were interpolated to the measured locations and the regressions were
carried out using the WHC data in their measured locations, i.e., no gridding was performed for
the WHC data. The same number of independent and dependent variables were used for each scale
at which the regressions were carried out.

2. Prediction of WHC at Different Scales

In order to calculate WHC, predicted WHC, ( I?), as a function of terrain variables at different
scales, Equation 13.1 can be rewritten as:

Bo+XIB1+X2B2+X3B3

Y=
1-aD

(13.4)

The value of o is determined from the spatial autoregression of the measured water holding
capacities vs. the terrain variables calculated as a function of a specific grid size. The predictions
are an interpolative process to fill in water holding capacities on regular grids at locations where
measurements are missing. In actuality, Equation 13.4 is a smoothing interpolator for WHC because
the predicted values are divided by the means of neighboring values. The grid sizes for interpolation
range from 5 X 5 (4725 values) to 55 x 55 (20) values.
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C. YieLp Data

For comparison with the interpolated WHCs, the 6- X 2-m yield data were gridded to 20- x 20-,
25- x 25-, 30- x 30-, and 35- Xy 35-m grids by block kriging using Surfer. The yield data were
then smoothed by using an average of the neighboring blocks (one grid cell on each side). The
linear default semivariogram was used. The linear semivariogram provides a smoothing of the data
similar to a moving average. Because the data were nearly continuous, the effect of the kriging
was to smooth the data rather than interpolate and fill in missing locations. For this reason, an
isotrophic, linear semivariogram was thought to be adequate. The WHC predicted from terrain
attributes were interpolated to the yield measurement locations using Surfer, which uses a bilinear
interpolation method.

I1l. INTERPOLATION AND MAPPING
WITH AUXILIARY VARIABLES

A. ToroGrapHy AND WATER FLOW IN THE LANDSCAPE

The field slopes gently from the north to the southeast (Figure 13.1). This generates flow of water
and materials toward the riparian area on the eastern border of the field. Zones of high positive
tangential curvature [convergent flow (red)] are aligned with the flow vectors (Figure 13.3) so that
zones are more continuous in the east to west direction than in the north to south direction.
These data suggest that landscape properties would have some relation to the correlation scales
of crop yield and soil hydraulic properties. Semivariance for crop yields has a longer range in the
east to west direction than in the north to south direction and suggests that the soil conditions that

1505501
150500 Convergent Flow
150450

150400

150350

150300 4
Divergent Flow

150250+

l T T ' '
413200 413250 413300 413350 413400

FIGURE 13.3 (See color insert following page 144.) Tangential curvature and water flow vectors calculated
from a 5- X 5-m DEM grid.
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FIGURE 13.4 Semivariogram of the 1998 yield data for N-S and E-W directions

affect crop growth also have this correlation structure (Figure 13.4). Fine soil material with higher
WHC and nutrients would tend to accumulate in the areas that are concave and converge water
flow and be removed from areas that are convex and shed water.

B. TERRAIN VARIABLES AND SOIL. PROPERTIES

Results from the same field’” showed that topographic variables complemented each other in
distinguishing zones of different texture within the landscape. Sands and silts were separated
reasonably well by slope, and tangential curvature discriminated transects by clay. Tangential
curvature and slope were significantly related to water contents at 10 and 33 kPa.”

Figure 13.5 shows the relationship between WHC (the difference between the 1500 and 10 kPa
water contents) and soil terrain variables: slope, tangential curvature, and profile curvature. There
was only a weak relationship between profile curvature and WHC. The relationships between WHC
and slope, and WHC and tangential curvature are stronger. In this site, the clay and silt contents
of the soil increase from the north section of the field to the south as elevation decreases. Slow
erosion of soil over a long period of time has resulted in movement of fines downslope and an
increase in WHC. The relationship with slope is stronger than with tangential curvature. Tangential
curvature rather than slope, however, was useful for distinguishing transects A and C, which differed
with respect to soil texture. The contour map of WHC in Figure 13.6 illustrates the relationship
with slope where WHC is increasing downslope with increasing silt content. Areas of equal WHC
are distributed perpendicular to the slope.

C. SPATIAL AUTOREGRESSION

Spatial autoregressions were carried out with terrain variables calculated from elevation grids for
arange in scales. Because the relationship with profile curvature was weak, only slope and tangential
curvature were used as regressors. The relationships shown in Figure 13.5 appear nonlinear. A
linear relationship was used here as a first approximation because there was little prior information
on how the linearity would be affected at different scales. The regression results in Table 13.1 show
that a large part of the variation had a spatial component. The value of a, the spatial autoregression
parameter, varied from 0.49 to 0.75 and was largest for terrain variables calculated on the finest
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FIGURE 13.5 Relationships between WHC and the terrain attributes, slope, profile curvature, and tangential
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FIGURE 13.6 Elevation map of study site with contours of measured WHC. The field boundary is shown.

grids. The amount of error explained by o was about five times that explained by the regression.
The proportion of the sums of squared differences explained by o was fairly constant among all
the scales, about 0.041. The error explained by regression varied from 0.02 to 0.012 ¢cm® cm™. The
total sums of squares, which is the variation about the mean of WHC, was constant for all scales
because the same values of WHC were used in all the regressions; only the terrain variables differed
among scales. The error sums of squares were also fairly constant, which is a reflection of the large
component of spatial variability and also shows that, as the error explained by o decreases, the
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TABLE 13.1
Regression Parameters for Slope and Tangential Curvature from Spatial Autoregression
and Ordinary Least Squares Regression

Ordinary least squares

Spatial autoregression parameters parameters

Scale Tangential Tangential
mxm o Intercept P Slope P curvature p Intercept  Slope  curvature
05x05 075 0.037 0. 0325 0.005 2.027 0.129 0.141 -1.137 2.330
10x10 076 0.034 0. 0294 0.004 1.030 0.499 0.136 —0.948 2.123
15x15 072 0.041 0. -0.400 0.000 -1.140 0.651 0.141 -1.276 -3.196
20x20 064 0.052 0. 0505  0.000 10.635 0.057 0.143 -1.399 21.230
25x25 056 0.061 0. 0478 0.002 21.238 0.002 0.137 -1.108 44.495
30x30 0.61 0.055 0. 0512  0.003 16.236 0.050 0.141 -1.320 36.532
35x35 050 0.066 0. 0340 0.056 39.052 0.000 0.132 -0.647 77.906
40 x40 0.63 0.052 0. 0439 0.045 14.196 0.127 0.136 -0.957 48.011
45x45 061 0.057 0. -0.631 0.004 10.072 0.458 0.144 -1.505 31.250
50x50 059 0.059 0. -0.667 0.002 13.280 0.298 0.143 -1.560 36.319
55x55 0.8 0.064 0. -0.942  0.000 0.629 0.971 0.150 —2.149 8.394

Note: The slopes and tangential curvatures were calculated from elevations interpolated to the scales given below. The
units for WHC are cm?® cm3, for the slope parameter are (cm? cm?) per (m m')and for the tangential curvature parameter
are (cm® cm3) per m .

error explained by regression increases. The root mean squared error of the pure OLS model was
somewhat more than the root mean square error of the spatial autoregressive model.

A large component of the error is explained by the spatial location and shows the importance
of using local information to reduce error in regression relationships. A previous study'? investigated
relationships between yield and NDVI (normalized difference vegetation index) and reported that,
for a 9- X 9-m grid, elevation and NDVI explained only 7% of the variance in yield, while the
autocorrelation parameter, o, explained 86% of the variance. The spatial autocorrelation coefficient
still explained a large portion of the error in spite of including elevation, a locational parameter in
the regression.

The parameters for the regression models are given in Table 13.1. The parameter for slope was
significant at all scales except the 35- X 35-m scale. Slope is a large scale variable and changes
smoothly over distance in this field. The parameter for tangential curvature was not significant at
the larger or smaller scales. The tangential curvature, however, is calculated as second differences
of elevation and can be roughly interpreted as a change in slope. At the largest scales, the small
scale changes in slope are largely smoothed and the effect of tangential curvature (changes in slope)
is lost. At small scales, there is so much noise in the data that a meaningful relationship between
tangential curvature and WHC cannot be determined. Note that, among the different scales, the
largest weight was assigned to tangential curvature at the 35- X 35-m scale where the r? was highest.
The parameter for slope for this scale, however, was not significant at p = 0.05. Also, the parameter
for slope is smallest where the parameter for tangential curvature is highest. Some of this effect
can be attributed to colinearity between the two variables, which is not unexpected because they
are both calculated from elevation.

The best fit to the data in terms of 12, error, and significance of parameters was provided by the
terrain variables calculated at the 25- X 25-m scale. The terrain variables calculated at the 35- X 35-
m scale had the lowest error but not all regression parameters were significant. Within the range of
the 25- x 25-m and 35- x 35-m scales there is not a clear advantage in terms of r? and error to
calculating terrain variables from any one scale of elevation data. This may be due to the selection
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TABLE 13.2

Output Statistics for the Spatial Autoregression of Water Holding Capacity vs. Terrain
Parameters Where Terrain Parameters Are Calculated from Different Scales of Interpo-
lated Elevation Data

Scale of RMSE (cm3
landscape Sums of squares (cm® cm-3)? 12 cm3)
parameters

mxm o o Regression Error Total o Regression  Overall Spatial OLS

05 x 05 0.75 0.046 0.002 0.016 0.065 71.1 33 75.4 0.013  0.022

10 x 10 0.76  0.046 0.002 0017 0.065 71.5 2.3 75.0 0.013  0.023

15x 15 0.71  0.045 0.003 0.017 0.065 69.6 42 74.5 0.013  0.020

20 % 20 0.64 0.043 0.005 0.017 0.065 66.2 8.2 74.6 0.013  0.018

25 %25 055 0.039 0.009 0.017 0.065 60.7 13.6 74.5 0.013  0.016

30 x 30 0.61 0.042 0.006 0.017 0.065 645 9.7 74.4 0.013  0.017

35x35 049 0.036 0.012 0.016 0.065 564 18.0 74.5 0.013  0.015

40 x 40 0.63 0.042 0.005 0.017 0.065 65.6 79 73.8 0.013  0.017

45 x 45 0.61  0.042 0.006 0.017 0.065 64.5 9.4 74.1 0.013  0.017

50 x 50 0.58 0.040 0.007 0.017 0.065 627 11.0 73.8 0.013  0.016

55 x 55 0.58 0.040 0.007 0.017 0.065 627 11.3 74.1 0.013  0.016

of the same distance for the grid dimensions on the east to west and north to south sides. Because of
the anisotropy in the slope and curvature data, an anisotropic grid may have been a better choice.

The regression parameters from the pure OLS model were higher than from the spatial model
(Table 13.1). This is because values of WHC predicted by the spatial autoregression have been
adjusted by removing the effects of neighboring values. This reduces the magnitude of WHC in
the regression relationship.

Only the effect of calculating slope and tangential curvature from different scales of elevation
data has been investigated. The scale of the measured WHC is the measured scale and has not been
changed. Thus the change in o over the different scales reflects the effects of calculating terrain
variables from grids interpolated to varying levels of detail from a given set of measured elevations.
The lowest value of o was associated with the scale with the highest regression 1> (Table 13.2).
This suggests that more spatial error can be explained by stronger relationships with the regression
variables. Note that the RMSE for the OLS regression varied over the scales and was generally
lower when terrain variables were calculated from the more coarse scales of elevation data (Table
13.2). The RMSE for the spatial autoregression was almost constant (the differences were only
seen in the fourth significant digit after the zero). This indicates that the total information content
in terrain parameters and WHC was roughly the same among all the scales when spatial relationships
were taken into account.

D. INTERPOLATION AND MAPPING OF WHC AT DIFFERENT SCALES

The value of ¢ and the regression coefficients determined from the terrain variables calculated
from the elevation grids were used to generate contour plots of WHC at 20- X 20-m, 25- X 25-m
and 30- x 30-m resolutions (Figure 13.7). Smoothness and loss of detail increase as the size of the
grid on which terrain variables were calculated increases. The coarsest scale of 30 x 30 m in Figure
13.7 shows larger, connected areas of uniform water availability. WHC in all the maps shows a
general pattern of bands of increasing WHC from the upper section of the field to the lower section
in the direction of decreasing slope. This is in accord with the measured WHC (Figure 13.6).
Overall, as the scale of the elevation data from which the terrain variables are calculated
becomes more coarse, the level of spatial autocorrelation for WHC decreases and the amount of
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FIGURE 13.7 Contour maps of predicted and interpolated WHC at three scales.

error explained by the regression of WHC on slope and tangential curvature increases. This may
be related, in part, to the aggregation of the elevations as terrain parameters are calculated from
elevations averaged over larger distances, an effect termed the modifiable unit area problem.'® The
significance of the dependence of WHC on slope and tangential curvature also changes with scale.
The dependence on tangential curvature is only significant at the midrange scales similar to that
of the scale of the elevation data. Interpolation of tangential curvature to scales much finer than
the scale at which elevations were measured probably increases the error so very little real infor-
mation is related to WHC. At the coarsest scales, the effect of smoothing elevation results in a loss
of detail in the tangential curvature, reducing its effect on WHC.

The dependence of WHC on slope is not greatly different among scales although its effect is
least significant at the midscales, 35 X 35 m and 40 X 40 m. At these scales, the effect of tangential
curvature is highly significant and the tangential curvature coefficients are largest. This suggests
that tangential curvature is accounting for some of the effects of slope, especially at the 35- x 35-
m scale. These results reflect the scale of the two predictors, slope and tangential curvature. At this
site, slope is a large scale variable and varies slowly over large distances. Because tangential
curvature is calculated as a derivative, it is sensitive to small changes in elevation and would have
a smaller scale than elevation.

E. MEeasurenp Crop YieLDs AND INTERPOLATED WHC

The interpolated water holding capacities were compared to corn grain yields obtained from a yield
monitor for the 1997 and 1998 growing seasons. Figure 13.8 shows the relationships between
predicted WHC and yield. Second-order polynomial regressions were carried out for the WHC and
yield relationships (Figure 13.8). These relationships predict a plateau at higher water holding
capacities where increasing WHC no longer results in increasing yields. This relationship is
supported by measured water holding capacities and yields at this site.?!

Root mean square errors and 12 values for these OLS polynomial regressions (Table 13.3) are
presented for approximate comparison purposes only because they are likely to be inflated due to
spatial correlation. The errors and 12 values are largely similar among all the scales. Generally, all
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FIGURE 13.8 Relationships between predicted WHC and crop yields from 1997 and 1998 for several scales.

TABLE 13.3

Root Mean Square Errors (RMSE (cm*cm2)?) and r2 Values from the Second-Order
Polynomial Regression between Interpolated Yield and Predicted Water Holding
Capacity at Four Scales

Scale (m x m)

20 x 20
25 x 25
30 %30
35x 135

1997

1998

RMSE

568.6
543.9
474.2
472.8

43.9
40.3
39.5
24.4

RMSE

1037.3
905.0
900.2
898.9

r2

54.6
55.1
46.6
37.5
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the scales to 30 X 30 m seem to give similar results; only the 35- X 35-m scale seems very different
from the others in terms of r> and RMSE. The minimum values and range of WHC vary by scale
(Figure 13.8). The minimum values of WHC predicted at the 20- X 20- and 25- X 25-m grids were
lower than in the input data. The 20- X 20- and 20- 25-m scales had the widest range of predicted
WHC values and the measured WHC ranged from 0.068 to 0.19 cm?® cm=. In spite of the extrap-
olation, however, the relationship of these lowest values with grain yield is consistent with the
remainder of the yields at higher WHC. Others?? have reported correlations on the order of 0.13
and 0.20 for corn and soybean yields, respectively, with soil water storage. The strength of the
correlation varied by elevation.

The larger range of WHC values in the finer scales probably contributes to the higher 1 values.
Also, the 12 value is proportional to the ratio between the amount of error explained by the model
and the total error. As in the previous data, there is no clear advantage to choice of scale. When
comparing the use of a single scale of yield data to scaling the yield data to the WHC scale, the
latter method appears to result in lower RMSE over all the scales.

A water budget model has been used?! to estimate soil water availability from yield map data
collected after seasons with below average rainfall. The correspondence between grain yield and
WHC found here is in agreement with the results of that study. This also suggests that the
optimization method used? could be improved by including terrain variables and using some
method of stochastic simulation to distribute the optimized water holding capacities spatially in
the landscape.

IV. CONCLUDING REMARKS

Water holding capacities in the upper 10 cm of soil were sampled on transects and a grid on a
6-ha field. The objective of the study was to interpolate these sparsely sampled data to a more
dense grid using terrain variables calculated from more readily available elevation data. Terrain
variables (slope, tangential curvature and plan curvature) were calculated from elevations inter-
polated to scales from 5 X 5 m to 55 X 55 m. Spatial autoregression was used to predict WHC
at the measured locations using calculated terrain parameters as predictors. Slope and tangential
curvature were found to be significant predictors of surface WHC. The spatial autoregression
parameter, o, explained 60 to 70% of the variance in the relationship between terrain variables
and WHC. The 25- X 25-m scale of terrain variables gave the best fit. At finer scales, there was
too much noise and at more coarse scales too much smoothing of the terrain attributes. The water
holding capacities were predicted on regular grids of 20- x 20-, 25- X 25-, 30- x 30- and 35- X
35-m dimensions and compared with crop yields measured with a yield monitor and interpolated
to the same grids using block kriging. There was a good correspondence between predicted WHC
and measured corn grain yields.

Prediction of WHC to fill in “holes” using spatial autoregression is similar to forecasting time
series analysis. Error is minimized by using neighboring values to better estimate WHC at a specific
location.! In this sense, local information is taken into account. Estimated points that are further
apart would have a higher prediction error than points closer together. Other geostatistical methods,
such as co-kriging, have been used to relate two variables spatially, but this requires that the
semivariograms for the variables be modeled as one semivariogram.'* One advantage of spatial
autoregression is that it is primarily a statistical tool as opposed to geostatistics where the principal
goal is to produce a generalized map surface (Griffith and Layne,!® page 469). Both methods,
however, seek to quantify spatial autocorrelation and so have many similarities' describing linkages
between autoregressive and semivariogram models (Griffith and Layne,!> page 469). As shown in
this chapter, spatial autoregression is a useful tool to develop prediction equations for spatial data.

Water holding capacities used in spatial models are often estimated from soil maps and soil
texture.?® Although textural components, as well as soil map units, are closely related to topography,
the estimated water holding capacities may not be realistically spatially distributed. This spatial
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distribution can be better accounted for by distributing the water holding capacities as a function
of topography. The WHC predicted from terrain attributes using spatial autoregression can be used
to generate a map of WHC. Such a map will be useful to develop management zones for this field
or to use as input in crop models.

V. ACKNOWLEDGMENTS

The authors wish to express their gratitude to Dr. Kelley Pace and Dr. Jhonathan Ephrath, who
provided very helpful suggestions for early drafts of the paper, and to the anonymous reviewers
for their highly insightful comments and suggestions. These greatly improved this chapter.

REFERENCES

1. Yeh, PJ.F. and Eltahir, E.A.B., Stochastic analysis of the relationship between topography and the
spatial distribution of soil moisture, Water Resour. Res., 34, 1251, 1998.

2. Western, A.W., Grayson, R.B., Bloschl, G., Willgoose, G., and McMahon, T.A., Observed spatial
organization of soil moisture and its relation to terrain indices, Water Resour. Res., 35, 797, 1999.

3. Tomer, M.D. and Anderson, J.L., Variation of soil water storage across a sand plain hillslope, Soil
Sci. Soc. Am. J,, 59, 1091, 1995.

4. Hanna, A.Y., Harlan, PW., and Lewis, D.T., Soil available water as influenced by landscape position
and aspect, Agron. J., 74, 999, 1982.

5. Moulin, AP, Anderson, D.W., and Mellinger, M., Spatial variability of wheat yield, soil properties
and erosion in hummocky terrain, Can. J. Soil Sci., 74, 219, 1994.

6. Sudduth, K.A., Drummond, S.T., Birrell, S.J., Kitchen, N.R., and Stafford, J.V., Spatial modeling of
crop yield using soil and topographic data, in Precision Agriculture '97. Volume I. Spatial Variability
in Soil and Crop. Papers presented at the First European Conference on Precision Agriculture, Warwick
University, UK, 7-10 September, 1997, 439-447.

7. Pachepsky, Ya., Timlin, D.J., and Rawls, W.J., Soil water retention as related to topographic variables,
Soil Sci. Soc. of Am. J., 65, 1787, 2001.

8. Timlin, D.J., Pachepsky, Ya., Snyder, V., and Bryant, R.B., Spatial and temporal variability of corn
yield on a hillslope, Soil Sci. Soc. Am. J., 62, 764, 1998.

9. Sinai, G., Zaslavsky, D., and Golany, P., The effect of soil surface curvature on moisture and yield
— Beer Sheba observation, Soil Sci., 132, 367, 1981.

10. Moore, 1., Gessler, PE., Nielsen, G.A., and Peterson, G.A., Soil attribute prediction using terrain
analysis, Soil Soc. Am. J., 57, 443, 1993.

11. Bouma, J., Using soil survey data for quantitative land evaluation, Adv. Soil Sci., 9, 177, 1989.

12. Pachepsky, Ya., Rawls, W.J., and Timlin, D.J., The current status of pedotransfer functions: their
accuracy, reliability, and utility in field- and regional-scale modeling, in Assessment of Non-point
Source Pollution in the Vadose Zone, Corwin, D.L., League, K., and Ellsworth, T.R., Eds., American
Geophysical Union, Washington, D.C., Geophys. Monograph, 108: 223-234, 1999.

13. Long, D.S., Spatial autoregression modeling of site-specific wheat, Geoderma, 85, 181, 1998.

14. Goovaerts, P., Using elevation to aid the geostatistical mapping of rainfall erosivity, Catena, 34, 227,
1999.

15. Griffith, D.A. and Layne, L., A Casebook for Spatial Statistical Data Analysis. Spatial Information
Systems. Oxford University Press, 1999, 506 pps.

16. Mitdsova, H. and Hofierka, J., Interpolation by regularized spline with tension: II. Application to
terrain modeling and surface geometry analysis, Math. Geol., 25, 657, 1993.

17. Griffith, D.A., Estimating spatial autoregressive model parameters with commercial statistical soft-
ware, Geogr. Anal., 20, 176, 1988.

18. Griffith, D.A., A numerical simplification of estimating parameters of spatial autoregressive models,
in Spatial Statistics: Past, Present, and Future, Griffith, D.A., Ed., Institute of Mathematical Geog-
raphy. Ann Arbor, MI, 1990, 185-196.




A Mix of Scales: Topography, Point Samples and Yield Maps 241

19.

20.

21.

22.

23.

Pace, K.R. and Barry, R., Quick computation of regressions with a spatially autoregressive dependent
variable, Geogr. Anal., 29, 232 ,1997.

Pace, K.R. and Gilley, O.W., Using the spatial configuration of the data to improve estimation, J. Real
Estate Finance Econ., 14, 333, 1997.

Timlin, D.J., Pachepsky, Ya., Walthall, C.L., and Loechel, S.E., The use of a water budget model and
yield maps to characterize water availability in a landscape, Soil Till. Res., 58, 219, 2001.

Logsdon, S., Pruger, J., Meek,, D., Colvin, T., Jaynes, D., and Milner, M., Crop yield variability as
influenced by water in rain-fed agriculture, in Proceedings of the Fourth International Conference on
Precision Agriculture, St. Paul, Minnesota, USA, 19-22 July 1998. Part A and Part B. Robert, P.C,,
Rust, R.H., and Larson, W.E., Eds., 1999, 453-465.

Turner, D.P., Dodson, R., and Marks, D., Comparison of alternative spatial resolutions in the appli-
cation of spatially distributed biogeochemical model over complex terrain, Ecol. Model, 90, 53, 1996.

T

™y

TTNE




150560

150500

Convergent Flow

150450

150400

150350-

150300 04 Divergent Flow

150250

413200 413250 413300 413350 413400

FIGURE 13.3 Tangential curvature and water flow vectors calculated from a 5- x 5-m DEM grid. Th
field boundary is shown in blue.
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