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Schematic of a biochemical cellulosic 
ethanol production process

(Source: NREL web site, accessed in March 2011)
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Pretreatment?
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 Purpose: 

• It is required for efficient enzymatic hydrolysis of biomass 
because of the physical and chemical barriers that inhibit the 
accessibility of enzyme to the cellulose substrate.

• Open up the rigid structure.

• Pretreatment is one of the key elements in the bioconversion of 
lignocellulosic materials. 

 Common Effects:

• Decrease of lignin, hemicellulose, and extraneous components.

• Increase of surface area, porosity, and pore size. 

• Reduce the crystallinity of cellulose

• Enhance the accessibility of enzyme to the cellulosic substrate

Pretreatment

(Source: Kim, T.H. Book Chapter: Pretreatment of lignocellulosic biomass, In-press, 
Book title- Bioprocessing Technology~, John Wiley&Sons)

NREL
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Ideal biomass pretreatment

• High enzymatic hydrolysis rate and 
high yields of ethanol/butanol 
(products).

• Minimal degradation of the 
carbohydrate fractions.

• No production of compounds that are 
inhibitory to microorganisms used in 
the fermentation step.

• Inexpensive materials of construction.

• Mild process conditions to reduce the 
capital costs.

• Recycle of chemicals to reduce the 
operating costs.

• Minimal wastes. (Source: Drapcho, Nghiem, Walker, 2008. Biofuels Engine
ering Process Technology, McGraw Hill) 6



Problems of conventional pretreatment 
methods

• High liquid input: high energy cost
High chemical loading

Washing step is required

• Can “low-liquid pretreatment” be possible?

• Pretreatment which uses no-additional water 
and low

• Low moisture anhydrous ammonia (LMAA) 
pretreatment
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Chemical and water inputs in various 
pretreatment methods and their ethanol 
yields 

Methods Reaction conditions

Chemical 
input

Water 
input1

Max. theoretical 
EtOH yield & 

conc.2

[g/g-
biomass]

[g/g-
biomass]

[%] ([g/l])

Dilute 
acid3

190 C, 2.0 min, 2.6 g-liquid/g 
biomass, 1.9 wt.% H2SO4

0.05 2.5 ?

ARP4 170 C, 10 min, 3.3 g-liquid/g-
solid, 15 wt.% NH3

0.5 2.8 ?

SAA5. 60 C, 12 h, 6.0 g-liquid/g-
solid, 15 wt.% NH3

0.9 5.1 ?

LMAA6
80 C, 84-96 h, 1.1 g-liquid/g 
biomass, 50-70% MC

0.1 1.0~2.3 ?

Note: 1. Water input does not include washing water; 2. Maximum ethanol yield and concentration are 

based on the optimal reaction conditions; ethanol yields are calculated based on total glucan and xylan in 
untreated corn stover; 3. Dilute acid (Kazi et al., 2010, NREL Report); 4. ARP: Ammonia recycle percolation (Kim et 
al., 2006); 5. SAA: Soaking in aqueous ammonia (Kim and Lee, 2005; Kim and Lee, 2007); 6. LMAA: Low moisture 
anhydrous ammonia (Yoo et al., 2011)

Water input does not include washing water
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Schematic of corn stover-to-ethanol 
conversion using LMAA and SSCF

Biomass

Gaseous 

Anhydrous 

Ammonia

Ammonia gas recycling

Biofuel

Ammoniation Pretreatment Evaporation Fermentation

Lignin

Enzymes & 

microorganism

Heating & Insulation

Ambient temp~80C; 

<10 psig

40~80C; 6~96 h in 

closed container

Ammonia gas absorber
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LMAA process conditions

Substrate

Corn stover (central Iowa, 2009)

Ammoniation

30 – 70 % MC, 10 min, ~10 psi

Bench-scale reactor (2.85 in. ID×6.5 in. L, 690 ml of internal 

volume)

Pretreatment

20-140 °C, 24-144 h 

Batch reactor (0.93 in. ID×6 in. L, 67 ml of internal volume)

Evaporation

Ambient condition, 12 h 
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Ammonia as a pretreatment 
reagent

● Highly selective and effective in 
delignifying the biomass.

● Minimal interaction with cellulose and 
hemicellulose

● Prevention of fungal growth

● Easy to recover and reuse because of 
high volatility.

● One of the most widely used commodity 
chemicals (one-fourth the cost of sulfuric 
acid).

● Non-polluting and non-corrosive
chemical.
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Lab-scale LMAA experiments setup

Ammoniation

PG : Press. Gauge

TG : Temp. Gauge

PG TG

N2 gas

Purge

TG

Pretreatment
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1. Effects of LMAA Pretreatment 
on Ethanol Fermentation

13



Note. Conditions: Anhydrous Ammonia treatment; reaction conditions: 70% MC, 40 –
140 ﾟC, 96 hours; All numbers are based on dried untreated corn stover
ASL: Acid soluble lignin / AIL: Acid insoluble lignin

Effects of LMAA pretreatment 
temperature on corn stover composition 
(96 hour pretreated corn stover)

ASL

Xylan

Glucan

AIL

Untreated 40C 80C 140C
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SSCF test using “recombinant E. coli ATCC 
® 55124 (KO11)”

Microorganism

Recombinant Escherichia coli KO11 ATCC® 55124

Medium

LB medium (0.5% of Yeast extract, 1% of Tryptone) 

Substrate

LMAA pretreated corn stover (50-70 % MC, 40-120ﾟC, 24-

144 h)

3% w/v glucan loading

Enzyme loading

15 FPU of GC220 + 30 CBU of Novozyme188 + 1,000 
GXU of Multifect xylanase (5 mg protein) per g-glucan
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Effects of xylanase on SSCF of LMAA-treated 
solid
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Note. Conditions: (1) Anhydrous Ammonia treatment; reaction conditions: 50% MC, 80ﾟ
C, 84 hours; (2) Anhydrous Ammonia treatment; reaction conditions: 70% MC, 80ﾟC, 
84 hours ; SSF/SSCF condition: 3% glucan loading; 15 FPU GC220, 30 CBU 
Novo188; E.Coli KO11, 37˚C, 150 rpm, pH 7.0  (1) with Multifect xylanase 5mg 
protein/g-glucan; (2) without xylanase

31 %

(1)

(2)
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Effects of pretreatment conditions on ethanol 
fermentation

Design-Expert?Software

Ethanol conc.
25.1

13

X1 = A: Treatment time
X2 = B: Treatment temp.
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  A: Treatment time    B: Treatment temp.  

Ethanol conc.  = -6.92969 +0.24235 * Treatment time +0.38824 * Treatment temp.

-6.38021E-004 * Treatment time * Treatment temp. -9.41277E-004 * Treatment time2

-1.49433E-003 * Treatment temp.2

The optimum reaction conditions: 

• Reaction time = 92.3 h

• Reaction temp. = 109.8 C. 

• ethanol production = 25.5 g/l.
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Images of biomass structure

Untreated Corn Stover

(20X objectives with dark-field)

LMAA treated Corn Stover

(20X objectives with dark-field)

Note. Conditions: Anhydrous Ammonia treatment; reaction conditions: 70% MC, 110ﾟC, 92 hours
Images are taken by DXR Raman Microscope (Thermo scientific, IA, USA) 18



2. Effect of Residual Ammonia 
Content on Ethanol Fermentation
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Moisture contents vs. Residual ammonia 
in the Ammoniated Corn Stover
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Effect of moisture content in untreated C.S. on 
120-h fermentation and residual ammonia 
content of LMAA-treated biomass
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Note: Pretreatment condition: 30 - 70 % of MC, 110 °C, 92 h, SSCF condition: 3 % w/v glucan loading/50 ml 
working volume; recombinant Escherichia. coli KO11 (ATCC® 55124); 15 FPU of GC 220/g-glucan, 30 CBU 
of Novozyme 188/g-glucan, 1,000 GXU of Multifect xylanase /g-glucan; LB medium; anaerobic condition; 
37°C, 150 rpm. Ammonia content is based on dry biomass weight.
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Effects of residual ammonia on 
ethanol fermentation

y = 17.194x + 2.8142
R² = 0.8109
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Note. Pretreatment Conditions: (1) Anhydrous Ammonia treatment; reaction conditions: 70% MC, 110ﾟC, 
92 hours; (2) Soaking in Aqueous Ammonia; reaction conditions: 15 wt.% aqueous ammonia, 60ﾟC, 
24 hours, solid : liquid=1:8

DXR Raman microscope (Thermo Scientific, Barrington, IL )

4 spectra:  raw cornstover-areanormalize

2 spectra:  Average-saa-area-nor

4 spectra:  Average-lmaa-area-n
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Raman spectroscopic image of the  untreated, 
LMAA, and SAA pretreated corn stover

Untreated
SAA-treated
LMAA-treated

1620-1660: Ring 
conjugated C=C stretch

1185-1191: 
Phenol mode2896: Aliphatic C-H 

stretch - cellulose

Untreated
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Overall mass balance of LMAA process 
(50% moisture content case)

Glucan: 387 kg

Xylan: 233 kg
Lignin: 171 kg

Anhydrous NH3 (gas)

~117 kg
Ammoniation

10 psi, 10 min

Ethanol

320 kg

CO2

306 kg

SSCF
37 °C, pH=7.0, 

anaerobic

Solid residuesEnzymes

KO11 E. coli

Pretreatment
80 °C, 84 h, 50% M.C.

Evaporation
Ambient temp., 12 h

Glucan: 387 kg

Xylan: 233 kg

Lignin: 171 kg

Glucan: 387 kg

Xylan: 233 kg

Lignin: 171 kg

Glucan: 387 kg

Xylan: 233 kg

Lignin: 171 kg

NH3: ~11 kg

Water: 487 kg

NH3: 101 kg

Water: 513 kg

Glucan: 39 kg

Xylan: 23 kg

Lignin: 171 kg

Water 1,000 kg

Corn Stover

1,000 kg
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Chemical and water inputs in various 
pretreatment methods and their ethanol 
yields 

Method Reaction conditions
Chemical 

input
Water 
input1

Max. theoretical 
EtOH yield & 

conc.2

[g/g-
biomass]

[g/g-
biomass]

[%] ([g/l])

Dilute 
acid3

190 C, 2.0 min, 2.6 g-liquid/g 
biomass, 1.9 wt.% H2SO4

0.05 2.5 67 (18.5)

ARP4 170 C, 10 min, 3.3 g-liquid/g-
solid, 15 wt.% NH3

0.5 2.8 71 (19.4)

SAA5.
60 C, 12 h, 6.0 g-liquid/g-
solid, 15 wt.% NH3

0.9 5.1 70 (19.2)

LMAA6 80 C, 84-96 h, 1.1 g-liquid/g 
biomass, 50-70% MC

0.1 1.0 89 (24.9)

Note: 1. Water input does not include washing water; 2. Maximum ethanol yield and concentration are 

based on the optimal reaction conditions; ethanol yields are calculated based on total glucan and xylan in 
untreated corn stover; 3. Dilute acid (Kazi et al., 2010, NREL Report); 4. ARP: Ammonia recycle percolation (Kim et 
al., 2006); 5. SAA: Soaking in aqueous ammonia (Kim and Lee, 2005; Kim and Lee, 2007); 6. LMAA: Low moisture 
anhydrous ammonia (Yoo et al., 2011)

Water input does not include washing water
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“Very rough” Estimated ethanol 
production cost (2,000 ton corn stover/day basis)

Unit Dilute Acid SAA LMAA

Estimated EtOH 
Cost 

[$/gal EtOH] 3.39 3.31 2.54

Corn stover Input [ton/day]
2,000 2,000 2,000 

EtOH production [MMGal/year] 73 66 81

Operating cost [$/gal EtOH] 2.78 2.68 2.07

- Pretreatment [$/year] 34,870,659 15,641,239 7,566,725

- Chemical & Water 
recovery + WWT

[$/year] 13,347,286 14,252,993 2,592,294

Capital cost [$/gal EtOH] 0.61 0.63 0.47

- Pretreatment [$/year] 36,200,000 17,244,807 3,975,780

- Chemical & Water 
recovery + WWT

[$/year] 3,500,000 10,137,892* 10,137,892*

(by C.G. Yoo and T.H. Kim, 2011) 26* same numbers are applied.



Conclusions

• Ammonia and water inputs were significantly reduced
using LMAA pretreatment (~ 1:1 of biomass : liquid).

• LMAA pretreatment process resulted in high fermentation 
yield (89-91% theoretical maximum ethanol yield based on 

glucan + xylan in corn stover) with enzymes (15 FPU + 30 
CBU + 1,000 GXU/g-glucan) and E. coli KO11 strain.

• There is a strong relationship between residual ammonia 
contents and ethanol fermentation yield - Ammoniation can 
supply assimilable nitrogen for microbial growth in the 
fermentor.

• Moisture content, residual ammonia content, 
pretreatment temperature, and pretreatment time 
are important factors affecting ethanol fermentation.
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