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ABSTRACT 

Parnell, S., Gottwald, T. R., Irey, M. S., Luo, W.,  and van den Bosch, F. 
2011. A stochastic optimization method to estimate the spatial distri-
bution of a pathogen from a sample. Phytopathology 101:1184-1190. 

Information on the spatial distribution of plant disease can be utilized 
to implement efficient and spatially targeted disease management inter-
ventions. We present a pathogen-generic method to estimate the spatial 
distribution of a plant pathogen using a stochastic optimization process 
which is epidemiologically motivated. Based on an initial sample, the 
method simulates the individual spread processes of a pathogen between 
patches of host to generate optimized spatial distribution maps. The 
method was tested on data sets of Huanglongbing of citrus and was 

compared with a kriging method from the field of geostatistics using the 
well-established kappa statistic to quantify map accuracy. Our method 
produced accurate maps of disease distribution with kappa values as high 
as 0.46 and was able to outperform the kriging method across a range of 
sample sizes based on the kappa statistic. As expected, map accuracy 
improved with sample size but there was a high amount of variation 
between different random sample placements (i.e., the spatial distribution 
of samples). This highlights the importance of sample placement on the 
ability to estimate the spatial distribution of a plant pathogen and we thus 
conclude that further research into sampling design and its effect on the 
ability to estimate disease distribution is necessary. 

 
Spatially referenced information on disease incidence can be 

utilized to develop more efficient and effective use of disease 
control resources. For example, host removal radii have been 
implemented in recent economically significant eradication 
programs which work by targeting the spatial increase in asymp-
tomatic infections that occur around a detected focal infection 
(7,17). Additionally, applications in precision agriculture have 
sought to minimize pesticide inputs via spatially targeted spray 
applications whereby applications are limited to diseased hosts 
and their neighbors only (19). Such methods rely on accurate 
information on the spatial distribution of disease. A simple but 
time-consuming way to determine spatial disease incidence would 
be to conduct an exhaustive survey of a host population. However, 
resource constraints usually render this unpractical and so instead 
it is necessary to make inferences about the spatial distribution of 
disease from a sample. 

Although much progress has been made in nonspatial and 
spatially implicit methods to estimate disease incidence in plant 
epidemiology (13), much less work has been done on methods to 
generate estimated maps of disease incidence. The few plant 
pathological studies that have attempted to estimate the spatial 
distribution of disease have largely adopted techniques from 
geostatistics (16). These are universal methods which originate in 
mineral exploration and mining and use statistical models to 
estimate a continuous variable from a set of point samples. As 
such, a feature of these methods is that they are not underpinned 
by the epidemiological processes that shape plant disease distri-
bution, such as pathogen dispersal, nor do they incorporate the 
spatial heterogeneity present in host populations, which are often 

irregular and noncontiguous. The interaction of these two com-
ponents (dispersal and host heterogeneity) can lead to complex 
spatial patterns that are difficult to predict (9). 

In this paper an iterative stochastic optimization process is used 
to estimate the spatial distribution of a pathogen from a sample by 
explicitly simulating the individual distance-dependent spread 
processes between the pathogen and its host population. In doing 
so, the key epidemiological processes that determine the spatial 
distribution of a pathogen were incorporated; specifically, dis-
persal and the spatial availability of the host. The method is 
demonstrated through a case study of Huanglongbing (HLB) in 
Florida (syn. citrus greening, causal agent ‘Candidatus Liberi-
bacter asiaticus’), a bacterial pathogen spread by a psyllid vector 
(Diaphorina citri) (4). This case study has been selected because 
of the current economic significance of this pathogen and also 
because of the availability of high quality data sets from which 
the performance of our method can be tested (4). The data consist 
of an exhaustive survey of commercial citrus plantings in Florida 
whereby thousands of individual trees were inspected for symp-
toms of HLB disease, thus generating a complete disease map. 

MATERIALS AND METHODS 

In this section, we first describe the estimation method and then 
the data sets used to test the method. Finally, we describe the 
statistical approaches used to assess the performance of the 
method. 

Estimation method. The estimation method is an iterative 
stochastic optimization algorithm whereby we estimate the prob-
ability of disease for each unsampled individual. A host “indi-
vidual” represents a single tree in the examples given in this study 
but could equally represent a field, patch, or any other discrete 
unit of host. By iterating through unsampled individuals at 
random, updating their probability of disease and accepting only 
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map-improving changes, the estimated map becomes more accu-
rate with increasing iterations of the algorithm. The algorithm is as 
follows. 

Initialization  
1. The locations of all individuals in the host population are 

inputted and those which have been sampled are identified. 
2. The disease status of sampled individuals has been deter-

mined in the field/laboratory and we can allocate probabilities 
accordingly (i.e., either 1 if the disease is present or 0 if the 
disease is absent). For unsampled individuals, the probability of 
disease is drawn from a uniform distribution and this is used as 
the initial condition of the system. 

3. Based on the initial condition of the system, we calculate the 
initial value of the objective function (i.e., the function to be 
minimized during iterations of the algorithm). For our purposes, 
the objective function is a metric describing the accuracy of the 
estimated map. The “estimated map” refers to the set of estimated 
probabilities of disease for all unsampled individuals. In practice 
only the disease status of sampled individuals is known and 
therefore this is the only information that can be used to assess 
the accuracy of the estimated map, i.e., to determine the objective 
function. For ease of explanation, the full description of the 
objective function is saved until after the algorithm has been 
outlined in full. 

Iteration loop 
4. Choose an unsampled individual i at random and update its 

probability of disease according to the function. 

⎥
⎦

⎤
⎢
⎣

⎡
μ−θ−−= ∑

≠ ji
ijji dPP )exp(exp1  (1) 

This function is a description of how the probability of disease 
increases with distance to, and increased disease probability of, 
other individuals. Here, dij is the distance between unsampled 
individual i and (sampled or unsampled) individual j, where θ and 
µ are transmission and dispersal parameters, respectively. These 
parameters are unknown and are estimated in a later stage of the 
algorithm. Pi is the probability of disease for host individual j 
during the current iteration. 

5. Recalculate the objective function following the change 
made in step 4. 

6. Determine if the new value of the objective function calcu-
lated in step 5 is less than its value from the previous iteration 
(i.e., does it constitute an improvement in map accuracy based on 
the accuracy to estimate the status of sampled individuals). If it 
does then the change made in step 4 is accepted, otherwise the 
change is rejected (but see Discussion for alternative simulated 
annealing approach) and the previous estimated map and ob-
jective function are retained. 

7. Calculate if the stopping criterion is satisfied. The stopping 
criterion is calculated from the gradient of the objective function 
across previous iterations of the algorithm. If no changes can be 
found that significantly decrease the objective function, this 
gradient will approach zero. The stopping criterion is 

ε<−+ imi OFOF   

where OFi is the value of the objective function during iteration i 
of the algorithm. The number of iterations m and the value ε  
are selected from empirical observations of the objective function. 
This choice involves a trade-off between numerical accuracy  
and computation time. After considerable numerical experi-
mentation we use m = 5,000 and ε = 0.01. If the stopping cri- 
terion is satisfied the algorithm is stopped and the current 
estimated map is the final estimated map. Otherwise steps 4 to 7 
are repeated. 

A remaining issue is the selection of values for the parameters θ 
and µ. These are chosen by repeating steps 4 to 7 over a range of 

each of the parameters and selecting the combination which leads 
to the estimated map with the lowest objective function (i.e., the 
most accurate map). In this way the parameters θ and µ are esti-
mated during the optimization process. The initial values and 
range used are found by trial and error but a simple extension to 
the algorithm would be to automate this process. 

The objective function, calculated in steps 3 and 5 of the 
algorithm, is a measure of map accuracy based on how accurately 
we estimate the disease probability of sampled individuals. Opti-
mization problems usually involve the minimization rather than 
maximization of the objective function and thus for consistency 
we formulate the objective function such that by minimizing it we 
maximize map accuracy. As previously mentioned, the disease 
status of unsampled individuals will not be known in practice and 
so we have no information on how closely their estimates match 
their actual disease statuses. Thus, this information is not avail-
able for the calculation of the objective function. 

Instead, for each sampled individual, k, the probability that the 
individual is infected, Pk, is determined using the estimated prob-
abilities of disease from all other individuals (sampled and un-
sampled), Pj. 

⎥
⎦

⎤
⎢
⎣

⎡
μ−θ−−= ∑

≠ jk
kjjk dPP )exp(exp1  (2) 

Note that equation 2 is approximately equivalent to equation 1, as 
appears in step 4 of the algorithm. However, the key difference is 
in the index denotations; here, dkj is the distance between sampled 
individual k and all other individuals j. In contrast, equation 1 
involves the calculation of dij, which is the distance between 
unsampled individual i and all other individuals j. The parameters 
θ and µ are the transmission and dispersal parameters as before 
and take the same values as in equation 1. The objective function 
is the deviance, which is essentially a measure of the difference 
between the estimate of disease at each sampled individual, Pk, 
and its corresponding actual disease status, sk, 

∑
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The deviance metric originates in likelihood statistics and can be 
used to make a comparison between binary observations and 
probability estimates (14). It is essentially twice the log-likeli-
hood ratio of the estimated versus the actual values. The closer 
the estimated probability, Pk, to the actual status, sk, the smaller 
the contribution to the deviance from each sampled individual k, 
devk. The smaller the deviance (i.e., the objective function) the 
better the overall estimated map as measured against the infor-
mation we have from the sampled individuals. 

We also used the geostatistical method of indicator kriging to 
generate maps of disease distribution from samples from the test 
data sets to allow a comparison of our method with more general 
geostatistical approaches that have been utilized in the field of 
plant pathology. Kriging is a form of statistical interpolation 
whereby unknown values are estimated from observed data. There 
are many different types of kriging; however, indicator kriging 
lends itself to the binary nature of spatial incidence data sets (i.e., 
where we consider a set of individuals which are either infected 
or not infected) (8). 

Test data sets. The data sets represent an exhaustive survey of 
disease incidence in two separate commercial plantings of citrus 
in Florida in 2006 (Figs. 1A and 2A). In each, a single spatial 
snapshot of an epidemic is recorded for which the disease status 
(HLB disease present or absent) of each individual tree is ob-
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served. Each tree was visually assessed by a team of experienced 
field scouts familiar with the disease symptoms and HLB visually 
positive trees were confirmed by a senior scout/pathologist. For 
ease of reference, the HLB data sets are referred to as HLB1  
(Fig. 1) and HLB2 (Fig. 2). 

Assessing the accuracy of the estimated map against the 
true map. By simulating a random sample from the test data sets 
estimated maps of disease distribution can be estimated using the 
estimation method and then the performance of the method can be 
assessed by calculating how accurately the estimated probability 
of disease of each unsampled individual match its corresponding 
actual disease status. As a default we use a value of 15% as this is 
typical of sampling resource capabilities in the field; however, we 
also test the method using multiple random sample placements at 
a range of sample sizes from 5 to 25%. The estimated probabili-
ties of disease are converted to binary presence/absence estimates 
using the average estimated probability threshold approach (12). 
That is, the average estimated probability of infection across all 
unsampled individuals is calculated, then it is determined if each 
individual is positive or negative for the disease depending on if 
its estimated probability is greater than or less than the average, 
respectively. The maps are then evaluated using the kappa statistic 
(2,12). The kappa statistic is a measure of the proportion of 
individuals correctly estimated once the probability of chance 
agreement has been removed (2,12) and utilizes the four elements 
of the confusion matrix, i.e., false-positives (fp), false-negatives 
(fn), true-positives (tp), and true-negatives (tn). It is calculated as 
follows. 
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Kappa is zero if the estimated map is equal to a randomly gen-
erated map based on the mean incidence of disease in the sample 
(i.e., fp + fn = tp + tn), it is negative if it is worse than a randomly 
generated map (i.e., fp + fn > tp + tn ), positive if it is better than a 
randomly generated map (i.e., fp + fn < tp + tn), and unity if there 
is a perfect match between the estimated and true map (i.e., fp + 
fn = 0). 

RESULTS 

In this section, we describe the results relating to the HLB test 
data sets. For each, we present results for one run of the esti-
mation method from a randomly selected sample (Figs. 1 to 3). 
We then show results from further runs illustrating the effect of 
varying sample size and different realizations of random sample 
placements on the accuracy of the estimated maps and the 
comparison of our method with indicator kriging (Fig. 4). 

Estimated maps of HLB. Two observed maps of HLB disease 
are presented (Figs. 1A and 2A). The maps have visually similar 
spatial distributions of infected trees (Figs. 1A and 2A). A random 
sample of 15% was taken from each (Figs. 1B and 2B) and used 

 

Fig. 1. A, Map of the observed distribution of Huanglongbing (HLB) disease in a commercial planting in Florida as a result of exhaustive surveying (denoted as
HLB1). Infected trees are black and uninfected trees are white. B, The location of randomly selected hosts (sample size 15%) used as the input to the estimation 
method. Sampled trees that were infected are black and sampled trees that were uninfected are white. C, Estimated probabilities of disease presence for all 
unsampled hosts. The intensity of the grayscale denotes the probability of disease presence for each individual [0,1]. 
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to estimate the actual maps (Figs. 1C and 2C). The estimated 
maps appeared visually accurate for both HLB1 (Fig. 1C) and 
HLB2 (Fig. 2C). The kappa-statistic analysis showed that, for the 
sample realizations presented, HLB1 and HLB2 were estimated 
with very similar accuracy with values of 0.46 and 0.44, respec-
tively. The optimum values for the parameter values were differ-
ent for each test data set and HLB2 had a higher dispersal, µ, and 
transmission value, θ (Fig. 3A and B). The number of iterations 
taken to reach the optimum solution was similar for both test data 
sets (Fig. 3C and D). 

The influence of sample size and comparisons with indi-
cator kriging. So far only the results for one random sample of 
15% for each of the test data sets have been presented. To illu-
strate the influence of varying realizations of random sample 
placement and sample size we estimate maps for multiple runs of 
the program (each using a different randomly selected sample) 
using different sample sizes and determine the resulting kappa 
statistic (Fig. 4). Here, sample placement refers to different ran-
domly selected sets of sampled individuals. As expected, in gen-
eral, kappa increased with increasing sample size indicating that 
the accuracy to estimate disease distribution improves with sample 
size (Fig. 4). However, we also find some variation between 
different sample placements. For each test data set, we show that, 
in at least a minority of cases, it is possible for a randomly 
selected sample of 5% to generate a more accurate map than a 
sample of 25% (Fig. 4). The estimation method outlined in this 
paper significantly outperformed indicator kriging for sample 
sizes of 20% and above and also at sample size of 10% (HLB1) 

and 15% (HLB2) (Fig. 4; Table 1). When sample size was low 
(5%), the variation in map accuracy (kappa) was large for both 
our estimation method and indicator kriging and no significant 
difference between the two could be detected (Fig. 4; Table 1). 

DISCUSSION 

In this paper, we have presented a method to estimate the 
spatial distribution of a plant pathogen from a sample. Although 
the data used represent agricultural populations of citrus trees, the 
method retains enough generality to be applicable to many other 
types of pathosystems and host populations. The spatial depen-
dence exhibited by epidemics means that accurate estimates of 
spatial pathogen distribution can facilitate the targeted deploy-
ment of disease control resources. This is of key importance, not 
only because disease control resources are generally scarce and so 
must be deployed as efficiently as possible, but because patches 
of disease that go undetected for long periods can undergo 
exponential expansion and quickly become uncontrollable. Our 
method generates accurate estimates of pathogen spatial distribu-
tion by incorporating the key determinates of spatial pathogen 
dynamics, that is, the dispersal characteristics of the pathogen and 
the distribution of the host. Moreover, in principle the method 
retains enough generality to be applied to any pathogen that 
spreads by distance-dependent processes, although this requires 
further testing to confirm. To our knowledge no previous study in 
the field of plant pathology has developed a systematic method to 
estimate a disease map based only on a sample. However, a small 

 

Fig. 2. A, Map of the observed distribution of Huanglongbing (HLB) disease in a commercial planting in Florida as a result of exhaustive surveying (denoted as
HLB2). Infected trees are black and uninfected trees are white. B, The location of randomly selected hosts (sample size 15%) used as the input to the estimation 
method. Sampled trees that were infected are black and sampled trees that were uninfected are white. C, Estimated probabilities of disease presence for all 
unsampled hosts. The intensity of the grayscale denotes the probability of disease presence for each individual [0,1]. 
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number of studies have applied geostatistical techniques, such as 
kriging, to generate spatial estimates of disease risk based on 
various environmental factors including locations of known symp-
tomatic plants (15). It has been demonstrated that by incorporat-
ing epidemiological information on spatial pathogen dynamics it 
is possible to outperform general methods from the field of 
geostatistics (Fig. 4; Table 1). Epidemiological information has 
also been incorporated in recent studies using Bayesian Markov 
Chain Monte Carlo (MCMC) techniques to estimate dispersal and 
transmission parameters (3). MCMC methods are computation-
ally intensive and so alternative methods have also been proposed 
to estimate spatial parameters (10). The focus of these studies is 
parameter estimation but since they also estimate the probability 
of infection at unobserved sites during the parameter estimation 
process they could be used to construct disease maps. However, 
we offer a simpler and more readily implementable approach  
that, moreover, leads directly to an estimated map of disease 
distribution. 

The stochastic optimization process was initially achieved 
using a simulated annealing algorithm to avoid the problem of 

local minima (11,18). During simulated annealing, changes which 
decrease the objective function are always retained (i.e., good 
changes) but additionally some changes which increase the 
objective function (bad changes) are also retained with a certain 
probability. As the algorithm progresses this probability is decre-
mented with each iteration until eventually only good changes are 
accepted. By accepting some bad changes at the beginning of the 
algorithm it is possible to escape local minima (11,18). However, 
on examination of empirical data during the optimization process 
it was concluded that local minima did not present a problem in 
reaching the global optimum and therefore the simpler accept-
reject algorithm was preferred. The objective function was 
determined using the deviance measure which is a function of the 
log-likelihood ratio of the estimated probability of disease for 
sampled individuals compared to their corresponding known 
disease status. The main reason for this is because the log-likeli-
hood ratio weights against differences in the estimated value more 
heavily the further they are from the actual value. Although the 
deviance was used as a measure of accuracy during the optimi-
zation process, the kappa statistic was preferred as a measure of 

 

Fig. 3. The range of parameter values iterated over to find the combination which minimized the objective function (deviance) for A, Huanglongbing (HLB)1 and
B, HLB2. The intensity of the grayscale represents the value of the deviance and the white dots denote the location of the optimal parameter combination. C and 
D, The progress of the objective function during successive iterations of the algorithm for the optimal parameter combination for C, HLB1 and D, HLB2. 
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accuracy when comparing the estimated and actual maps for the 
purposes of assessing the method. The kappa statistic is a popular 
choice in studies of species distribution (1) and so its use here 
allows a comparison with such studies. Further, in practice, maps 
displaying probabilities of disease occurrence are less useful than 
maps displaying binary presence/absence data. For this reason, 
many studies of species distribution use threshold approaches to 
convert probabilities of occurrence to binary presence/absence 
estimates and then assess the accuracy of these estimates using a 
given test statistic (e.g., kappa). Additionally, since the kappa 
statistic was not used during the optimization procedure of our 
method, it allows a fair and independent comparison with the geo-
statistical method of indicator kriging (Fig. 4). Here the average 
estimated probability approach was used to determine our 
threshold, which has been shown to outperform other threshold 
approaches such as fixed-value thresholds (12). 

Our results show that it is possible to generate accurate spa-
tially explicit estimates of pathogen distribution from a sample. 
The HLB pathogen, like many plant pathogens, are known to 
form clusters or aggregates as a result of a combination of long 
and short range dispersal events (5,6). The current method 
accurately maps such spatial correlations and also captures the 
effect of host spatial structure on disease distribution (Figs. 1 and 
2). The method produced accurate disease maps with kappa 
values of 0.46 and 0.44 for HLB1 and HLB2, respectively, as well 
as outperforming the more generalized method of indicator 
kriging (Fig. 4). Much of the diseased pattern that was not 
captured is the result of random scatter from isolated, medium to 
long range, primary dispersal events. It should be noted that the 
precise location of such random events cannot be predicted by 
any method. That is, on average, a kappa value of zero (denoting 
randomness) is the maximum accuracy that can be expected  
in such cases. Although most pathogens disperse via spatially 
dependent processes, if an epidemic is characterized predomi-
nantly by random scatter then spatially implicit methods to predict 
incidence in the population as a whole are more appropriate  
(13). 

As expected, the accuracy to estimate pathogen distribution 
improves with increased sample size and also depends on the 
particular placement of the random sample taken (Fig. 4). How-
ever, the variation between different random sample placements 

(i.e., the distribution of randomly selected sampled individuals in 
space changes for each realization of a random sample) of the 
same sample size demonstrates that sample placement can have a 
large influence on map accuracy (Fig. 4). Some of this is un-
avoidable as in practice you do not know where the disease is and 
occasionally and by chance a realization of a random sample will 
exactly capture the shape of the disease pattern. For example, we 
have shown that it is possible in some cases for a random sample 
of 5% to outperform one of 25% (Fig. 4). That is, sample place-
ment can have a stronger effect than sample size. Even large 
random samples can lead to poorly estimated maps when popula-
tion clusters or voids are, by chance, underrepresented or missed 
entirely. Conversely, small random samples can led to accurate 
maps when all population clusters are well represented by the 
sample, again purely by chance. A natural extension of this work 
is to consider how other sampling designs, e.g., regular sampling 
or stratified random sampling, influence the accuracy to estimate 
pathogen distribution since random sampling is often not feasible 
in practice due to logistical constraints. Other sampling patterns 
such as regular sampling, e.g., sampling every Nth tree in a row, 
are often more popular choices in practice. Other further work is 
currently addressing the issue of how to implement the method 
when there is uncertainty in the host distribution. The method is 
being adapted to a grid-based approach to approximate habitat 
locations as an extension of the point pattern approach detailed 
here. This adapted approach will allow much larger host distri-
butions to be estimated which, due to computational limitations, 
are not feasible using the current method. It may also be possible 
to include available information on environmental variability to 
improve map estimation if the effect of, for example, meteoro-
logical variables on the probability of pathogen infection and 
dispersal within a host distribution is known. 

 

Fig. 4. The kappa statistic (accuracy of the estimated map compared with the true map) for changes in sample size. The closer the kappa statistic is to one, the 
more accurate the estimated map. For each sample size, we performed the method for 10 different random sample placements. Due to computational limitations, it 
was not possible to consider more than 10 realizations of each sample size. A, Huanglongbing (HLB)1 and B, HLB2. Open triangles represent the performance of 
the estimation method and the filled circles represent the performance of indicator kriging. Each is offset slightly from the corresponding x-axis value so that the 
data points can be distinguished. 

TABLE 1. P values for the nonparametric two-tailed Wilcoxon test of the 
kappa statistics for the estimation method compared with the indicator kriging 
method (corresponding to data in Figure 4)a 

Sample size 5% 10% 15% 20% 25% 

HLB1 0.684211 0.123005 0.014690 0.00105 0.000130 
HLB2 0.352681 0.052426 0.352681 0.00105 0.011496 
a Significant values are highlighted in bold (0.1). 
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