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Citrus huanglongbing (HLB), or citrus greening, is a 
serious and industry-limiting disease. It is caused by a 
fastidious prokaryote that survives in the sieve tube 
elements of infected plants. Three distinct species of the 
pathogen are known to cause disease with Candidatus 
Liberibacter asiaticus (Las) being the only species causing 
HLB in Florida, USA. Diagnosis of the pathogen is 
complicated by the fact that it cannot be grown in sterile 
culture, although recent progress towards culturing the 
organism has been made (1,8). Preliminary diagnoses can 
be made through visual symptoms, and greater certainty 
can be achieved through the use of PCR. The most widely 
used diagnostic test for pathogen identification is the 
quantitative real-time PCR (qPCR) assay developed by Li 
et al. (7). Other qPCR primer sets have been developed by 
Wang et al. (11), Shatters et al. (9), and by Irey 
(unpublished). It is not clear if any of these tests perform 
better than the others under any given set of conditions. 
Evaluating diagnostic tests typically relies on the ability to 
pre-classify so-called ‘case’ (diseased) and ‘control’ 
(healthy) samples with a ‘gold standard’ or reference test so 
that the sensitivity (the probability of detection in a truly 
infected plant) and specificity (the probability of non-detection 
in a truly healthy plant) of the new test can be accurately 
estimated – the notion being that the new test is cheaper, 
easier, faster, or all of the above relative to the gold 
standard. However, no gold standard test exists for HLB. 
The objectives of this study were to: 1) Evaluate the 
performance of several qPCR protocols as used in several 
diagnostic laboratories; and 2) Introduce methods of 
evaluating diagnostic tests in the absence of a gold 
standard. 
 
Materials and Methods: A total of 276 DNA samples 
(extracts) were sent for analysis to thirteen labs in FL, CA, 
TX, and MD. The DNA samples consisted of presumed 
positive samples (i.e., samples collected from symptomatic 
tissue that tested positive in preliminary testing), presumed 
negative samples (i.e., samples collected from screened and 
tested budwood trees, or from orchards in states not known 
to have HLB), samples that tested as questionable in 
preliminary testing, samples from citrus-relatives, and 
water blanks containing no DNA (5). All samples were run 
blind by all labs. qPCR procedures varied among labs by 
the type of qPCR implemented (Taqman®, SYBR Green® 

and EvaGreen®), multiplex vs. single primer sets for PCR, 
different master mixes, different primer sets, different 
machines and different systems for determining cycling 
threshold values (5). Specific test results from ten 
laboratories were considered in this analysis and are shown 
in Table 1.  

 
In a standard test evaluation, one might be tempted to 
consider symptomatic samples as disease positive (cases) 
and the asymptomatic samples as disease negative 
(controls) and perform a standard receiver operating 
characteristic (ROC) curve analysis. However, the 
expression or lack of expression of symptoms of HLB does 
not guarantee the presence or absence of the pathogen in 
that sample, and with the lack of a definitive gold standard 
test, alternatives to the ROC methodology must be 
employed for estimating test sensitivities and specificities.  
 
Several methods have been introduced to evaluate 
diagnostic tests in the absence of a gold standard (10). For 
tests producing binary results, the sensitivity and specificity 
must be estimated for each of the R tests being evaluated 
and the prevalence must be estimated in each of the S 
populations where the tests were applied. In general, there 
are (2R-1)S degrees of freedom to estimate (2R-1)S 
parameters for an arbitrary number of tests (R) and 
populations (S). Let ns(x) be the number of individuals 
receiving a classification x (e.g., there are 2R = 8 possible 
sets of test results [classifications] when R = 3 tests are 
applied to single population: 1-1-1, 1-1-0, 1-0-1, 0-1-1, 1-0-
0, 0-1-0, 0-0-1, 0-0-0), πs be the probability of disease, x(r) 
be the classification (test result) of a sample for test r, and 
αrs and βrs be the sensitivity and specificity of test r (r = 
1,2,…R) in a sample from population s (s=1,2,…,S). 
Assume that the πs’s are distinct between populations and 
that test results are conditionally independent. Under these 

Table 1.   Primer sets run by the collaborating labs. 

 Lab 

Primer Set 1 2 3 4 5 6 7 8 9 10 
Li et al. (7) x x x x x x  x x  
Wang et al. (11)       x    
Irey (unpublished)        x   
Shatters et al. (9)          x 
 



assumptions the test outcomes are distributed as S 
independent multinomials with log likelihood (10):  

 

 

 
The log likelihood is over parameterized for R less than 
three with no functional constraints, but there are ways of 
handing this situation (4). There is no simple closed-form 
solution for the maximum likelihood estimates (MLE), but 
the function can be evaluated numerically. One such 
method is to use the iterative Newton-Raphson (NR) 
algorithm to obtain the MLEs. Another approach takes 
advantage of the unknown disease status of individuals by 
treating disease status as a latent (unobserved) variable. 
Latent class analysis is a procedure used to identify the k 
distinct classes (subgroups or categories) of a nominal 
latent variable. Latent class analysis was introduced by 
Lazarsfeld (6), and was significantly extended and 
formalized by Goodman (2,3) who developed the 
expectation-maximization (EM) algorithm that now forms 
the basis of most programs that fit latent class models. 
Here, we can define π as a latent variable with two classes, 
diseased and disease-free or healthy. 
 
For this study, we compared test results of four diagnostic 
tests (R =4) from a single population (S=1) as run in 10 of 
the 13 labs (Table 1). For the primers developed by Li et al. 
(7), the mean Ct value was used and was calculated from 
the results of labs 1 thru 6, 8 and 9 from each sample. The 
Ct values recorded from labs 7, 8 and 10 were used for 
analysis, and were the result of the primer sets of Wang et 
al. (11), Irey, and Shatters et al. (9), respectively. The 
qPCR data were partitioned into two groups based on their 
test results. A test negative sample is a sample that has 
exceeded a predetermined threshold Ct value, and a test 
positive sample is a sample that has not exceeded the 
threshold Ct value. Since it is unknown which threshold Ct 
value best classifies diseased and healthy samples, analyses 
were conducted individually for Ct threshold values from 
25 to 40.  
 
PROC NLIN was used to obtain the MLEs via the Newton-
Raphson algorithm for the model above (SAS Institute, ver. 
9.2, Cary, NC). We used PROC LCA to fit the latent class 
model by treating disease status as a 2-class latent variable. 
The MLEs were obtained via the EM algorithm. PROC 
LCA can be obtained free-of-charge through Pennsylvania 
State University’s Methodology Center’s website 
(http://methodology.psu.edu/index.php/downloads/proclcalt
a

 

). Youden’s index, J (=α+β-1), was calculated from the 
MLE’s and was used to identify Ct values located farthest 
from the diagonal line that bisects a plot of the true positive 
proportion (α) versus the false positive proportion (1-β), 
and serves as one means of identifying practical threshold 
values.    

Results and Discussion: General results from the 
laboratory comparison study are published as part of the 
PROCEEDINGS OF THE INTERNATIONAL RESEARCH 
CONFERENCE ON HUANGLONGBING (5), and are not the 
focus here. However, one result reported in that summary 
of particular relevance to this study was labs running the 
primer set of Li et al. (7) produced similar Ct values for any 
given sample. This result was used to justify averaging the 
Ct values across labs and using these mean values in 
subsequent analyses. Because the other tests evaluated were 
run in single labs, averaging was not necessary.   
 
Estimation of test sensitivities (α) and specificities (β), as 
well as disease prevalence (π), were nearly identical 
between the NR and EM algorithms. Thus, only the MLE’s 
from EM algorithm are shown (Table 2). This result was 
not unexpected since the same model was being fit and the 
same parameters were being estimated. In practice, 
however, it was more difficult to achieve convergence 
and/or reasonable estimates using the NR algorithm as 
parameter estimation was sensitive to the starting values. 
Unlike ROC analysis, the sensitivities (specificities) do not 
systematically increase (decrease) as the threshold 
increases. This is because disease prevalence is not treated 
as a constant and can change accordingly.   
 
The sensitivities for all four tests were very high (α ≥ 0.97) 
for threshold Ct values above 32, with the Irey primers 
having the highest sensitivity over the greatest range of 
threshold Ct values (Table 2). The specificities for all four 
tests were very high as well (β ≥ 0.96) for threshold Ct 
values below 36, with the Li primers having the highest 
specificity over the greatest range of Ct values. Maximum 
values of J were near or equal to 1 for all primer sets, and 
were obtained at Ct values of 31 and 32 for all primer sets 
except for the Li primers. J obtained its maximum at Ct = 
36 for the Li primers, and was the only primer pair to 
achieve the maximum value of 1 for J, indicating that a 
cutoff of Ct = 36 provided perfect discrimination between 
test positive and test negative samples for this set of data. 
In practice, many diagnostic labs choose Ct = 30 as the 
cutoff, opting for greater specificity over sensitivity. 
Results from this study indicate that greater sensitivity can 
be achieved with minimal loss in specificity by choosing Ct 
= 31 or 32 for the Wang, Irey and Shatters primers and Ct = 
36 for the Li primers. 
 
In conclusion, all four primer sets evaluated have merit in 
the diagnosis of Las. Researchers and diagnosticians can 
use these results to help determine which test and which 
threshold is best suited to their application based on the 
need for either greater sensitivity or specificity (…the 
inherent tradeoff). With the exception of the Li primers, 
Youden’s index identified what most would consider a 
relatively high threshold Ct value as the optimal cutoff. 
Although several reasons could be hypothesized as to why 
this is so, the underlying cause is that presumed healthy 
samples generate a distribution of Ct values that ultimately 
result in prediction errors. This is not unique to this system, 
as nearly all diagnostic tests will, to various degrees, give 
false positive and/or negative results. The challenge to 
quantifying these errors for detecting Las was complicated 

http://methodology.psu.edu/index.php/�


by the lack of a gold standard. The methods demonstrated 
here provide the tools to estimate these errors in the face of 
uncertain disease status. The dataset used to demonstrate 
this analysis, although sufficient, was not optimal. In 
general, the distribution of Ct values between the presumed 
positive and negative samples was non-overlapping, and 
the number of uncertain samples tended to associate with 
the presumed negative samples (see poster figure). This 
separation could be identified in the analyses through J.    
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Table 2. Maximum likelihood estimates of the sensitivity (α), specificity (β), and disease prevalence (π) for four qPCR primer 
sets for the Ct value thresholds listed. MLE’s were estimated with the expectation-maximization (EM) algorithm, treating 
prevalence as a latent variable with two classes. The maximum value of Youden’s index (J) for each primer set is shown in 
boldface; the corresponding Ct value could be considered optimal under certain conditions and assumptions.  

  Primer Set 
   Wang et al. (11)   Irey (unpublished)   Shatters et al. (9)   Li et al. (7)  

Ct Value π α β J α β J α β J α β J 
28 0.21 0.93 1.00 0.927 0.98 0.99 0.969 0.91 1.00 0.915 0.91 1.00 0.915 
29 0.22 0.95 1.00 0.947 1.00 0.99 0.991 0.95 1.00 0.952 0.92 1.00 0.920 
30 0.23 0.98 0.99 0.979 1.00 0.99 0.985 0.94 1.00 0.938 0.94 1.00 0.938 
31 0.24 0.98 1.00 0.980 1.00 0.99 0.995 0.98 1.00 0.985 0.94 1.00 0.938 
32 0.24 0.98 1.00 0.980 1.00 0.98 0.981 0.98 1.00 0.985 0.97 1.00 0.969 
33 0.24 0.98 0.99 0.978 1.00 0.98 0.978 0.96 1.00 0.958 0.96 1.00 0.963 
34 0.26 0.94 0.99 0.932 1.00 0.99 0.986 0.97 0.97 0.943 0.93 1.00 0.928 
35 0.26 0.98 0.99 0.971 1.00 0.97 0.969 0.98 0.96 0.936 0.95 1.00 0.949 
36 0.26 0.99 0.98 0.962 1.00 0.94 0.941 0.99 0.96 0.947 1.00 1.00 1.000 
37 0.29 0.94 0.97 0.914 1.00 0.95 0.945 0.94 0.98 0.921 0.97 1.00 0.972 
38 0.32 0.93 0.94 0.868 1.00 0.89 0.889 0.89 0.98 0.864 0.99 1.00 0.999 
39 0.38 0.86 0.86 0.723 1.00 0.88 0.875 0.77 0.99 0.768 1.00 0.92 0.922 
40 0.78 1.00 0.78 0.780 1.00 0.78 0.780 1.00 0.78 0.780 1.00 0.78 0.780 


