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RESEARCH

ABSTRACT

The presence of genotype-by-environment inter-

action (GEI) complicates selection of superior 

geno types and an understanding of environ-

mental and genotypic causes of signifi cant GEI 

is important in all stages of plant breeding. We 

present a systematic approach for understand-

ing GEI of complex interrelated traits by combin-

ing chromosome substitution lines that allowed 

us to study the effects of genes on a single chro-

mosome with a structural equation model that 

approximated the complex processes involving 

genes, environmental conditions, and traits. We 

applied the approach to recombinant inbred 

chromosome wheat lines grown in multiple envi-

ronments. The fi nal model explained 74% of the 

yield GEI variation and we found that spikes per 

square meter (SPSM) GEI had the highest direct 

effect on yield GEI and that the genetic markers 

were mostly sensitive to temperature and pre-

cipitation during the vegetative and reproduc-

tive periods. In addition, we identifi ed a number 

of direct and indirect causal relationships that 

described how genes interacted with environ-

mental factors to affect GEI of several important 

agronomic traits which would not have been 

possible with previously used methods.

Analysis of Genotype-by-Environment 
Interaction in Wheat Using a Structural Equation 

Model and Chromosome Substitution Lines
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Understanding how genetic and environmental factors 
infl uence complex traits, such as grain yield, is a challeng-

ing problem in the plant sciences. Grain yield is dependent on a 
number of supporting traits infl uenced by many diff erent genes 
and by a multitude of environmental conditions at diff erent stages 
during plant development (Ashikari et al., 2005). In addition, the 
causal relationships between the environmental factors and the 
responses of the various traits depend on the genetic background 
of the plants. These diff erential relationships are defi ned as GEI 
which exists when two or more genotypes respond diff erently 
to environmental conditions. In plants, GEI is very important in 
that a genotype that performs well in one environment, relative 
to another genotype, may or may not perform well in another 
environment. However, understanding GEI is diffi  cult since it 
is the result of many complex interrelationships among physi-
ological, molecular, and environmental variables. An improved 
understanding of the relationship between environment and 
genes aff ecting quantitative traits (recognized as quantitative trait 
loci [QTL]) would provide considerable insight into how genetic, 
molecular, and physiological mechanisms are aff ected by various 
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environmental conditions, especially those that can be 
controlled in managed ecosystems.

The most commonly used approaches to understand-
ing GEI involve several challenging steps and are limited 
in their capabilities of characterizing the complex rela-
tionships involved in GEI. The fi rst step is to cross at 
least two genotypes, molecularly characterize hundreds 
of progeny representing segregants of the entire genome, 
and evaluate the progeny phenotypically under diff erent 
environmental conditions (Tanksley et al., 1982; Edwards 
et al., 1987; Stuber et al., 1987; Lander and Botstein, 
1989). Then, the GEI of a number of traits is evaluated 
for QTL-by-environment interaction where each trait 
is quantitatively assessed either by comparing results of 
QTL analyses conducted in individual environments or 
by using a univariate statistical model with QTL, envi-
ronment, and QTL-by-environment variables as predic-
tor variables (Stuber et al., 1992; Beavis, 1994; Beavis 
and Keim, 1996; Vargas et al., 1998, 1999; Crossa et al., 
1999). Molecular characterization of hundreds and possi-
bly thousands of progeny across the entire genome is likely 
not cost eff ective and using univariate statistical models is 
not conducive to understanding the complex relationships 
(epistasis, pleiotropism, etc.) among a number of traits and 
variables present when describing QTL-by-environment 
interaction. Moreover, a single dependent variable quanti-
tative approach cannot describe the complicated relation-
ships between traits, QTL, and environments where some 
traits function simultaneously as both dependent variables 
to be predicted by other genetic and environmental fac-
tors, and as independent predictor variables of other traits. 
Novel genetic and quantitative methodologies are needed 
for understanding how genes interact with environment 
in complex traits.

Here we use an approach for dissecting GEI of com-
plex traits that combines two distinctive components: 
chromosome substitution lines and structural equation 
modeling (SEM). Chromosome substitution lines, though 
rare in animals (Mackay, 1980), are common in wheat 
(Triticum aestivum L., 2n = 6x = 42) where they have a 
long history of use in genetic analysis (Sears, 1953). In a 
wheat chromosome substitution line, 20 of the 21 chro-
mosome pairs come from one cultivar (recurrent parent) 
and the remaining chromosome pair comes from a sec-
ond cultivar (donor parent). By comparing the recurrent 
parent to its chromosome substitution line, the contribu-
tion of genes on the substituted chromosome from the 
donor parent or the loss of genes from the recurrent parent 
can be identifi ed. Substitution lines eff ectively dissect the 
large hexaploid wheat genome into 1/21 increments with 
a common background, thus greatly reducing background 
variability and eff ects that would be found in segregat-
ing progeny populations from two parents. The recur-
rent parent and chromosome substitution lines are true 

breeding, hence can be tested in multiple environments. 
In previous research (Berke et al., 1992), chromosome 3A 
contained genes aff ecting anthesis date, grain yield, and 
yield components.

To dissect the location and relationship of genes on 
a chromosome, recombinant inbred chromosome lines 
(RICLs) can be developed (Law, 1966; Berke et al., 1992; 
Joppa et al., 1997; Shah et al., 1999) which are analogous 
to recombinant inbred lines (RILs) but in this case 20 
chromosome pairs are from the recurrent parent and only 
the chromosome of interest is allowed to recombine, again 
reducing the background variability. Since RICL lines are 
true breeding and can be evaluated in numerous envi-
ronments for the traits of interest, QTL-by-environment 
interaction can be precisely evaluated which can give con-
siderable insight into complex gene-environment interac-
tions when used in conjunction with SEM.

Genotype-by-environment interactions are very com-
mon in plants, yet understanding the underlying QTL-by-
environment interaction is diffi  cult. Most agronomically 
important traits are the result of a number of genetic, molec-
ular, and physiological mechanisms that aff ect the trait of 
interest either directly or indirectly through other inter-
mediate traits (Adams 1967; Thomas et al., 1970; Hamid 
and Grafi us 1978; García del Moral et al., 1991; Dofi ng 
and Knight 1992). Depending on the trait, this network 
among variables can be quite complex with the relation-
ships among variables depending on a number of factors, 
foremost of which is the stage of development and the envi-
ronmental conditions during those stages. In a similar fash-
ion, the GEI of each trait in the system will be infl uenced, 
either directly or indirectly, by a number of QTL-by-envi-
ronment interactions and GEI of other traits, which may, in 
turn, be infl uenced by other factors (Campbell et al., 2003). 
Identifying these complex relationships among variables 
will likely require considerable precision and since RICLs 
are more powerful for QTL analysis than RILs (Kaeppler, 
1997), RICLs will provide more precision for understand-
ing QTL-by-environment interaction.

Structural equation modeling is a generalization of 
path analysis proposed by Wright (1921) and is used to 
quantitatively analyze the causal structure among a num-
ber of variables where each may function as a dependent 
variable in some equations and an independent variable 
in others (Bollen, 1989). Because of this, SEM is ideal for 
characterizing the complex relationships of GEI where 
many traits function as both dependent variables to be 
predicted by environmental and genetic factors, but also 
as independent predictor variables of other traits further 
downstream. To use SEM to analyze GEI, prior knowl-
edge of the direction of the causal relationships is assumed 
and specifi ed through a path diagram and the model is 
then algebraically specifi ed by a system of regression-type 
equations where each variable is adjusted to contain only 
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GEI eff ects. A fi nal model is then developed by fi tting 
successive models and retaining signifi cant QTL-by-envi-
ronment variables which result in a better fi tting model. 
The fi nal model yields path coeffi  cients and a path diagram 
that contains only signifi cant paths thus giving insight 
into important relationships between the traits, QTL, and 
the environmental variables. The purpose of this work is 
to present a systematic approach for understanding GEI of 
complex traits by using chromosome substitution lines and 
a structural equation model that approximates the compli-
cated relationships among QTL, environmental variables, 
and traits.

MATERIALS AND METHODS

Winter Wheat Recombinant Inbred 
Chromosomes Lines
Field trials with a population of 75 recombinant inbred chro-

mosomes lines (RICLs-3A) were conducted at Lincoln, NE, 

in 1999 to 2001, and Mead and Sidney, NE, in 2000 and 2001 

for a total of seven environments using four replicate random-

ized complete block fi eld designs in 1999 and four replicate 

incomplete block fi eld designs in the other years as described in 

Campbell et al. (2003). The RICLs-3A population was derived 

from a cross between cv. Cheyenne (CNN) and the chromo-

some substitution line CNN (Wichita 3A). The agronomic data 

used in this study were grain yield (YLD) and the yield-compo-

nent traits 1000 kernel weight (TKW), kernels per spike (KPS), 

and SPSM. Linkage analysis for chromosome 3A detected nine 

QTL for the traits measured (Campbell et al., 2003). Six DNA 

markers (Xtam055, Xbarc86, Xbarc67, Xksua6, Xbcd1555, and 

Xbcd361), linked to QTL, were considered as genotypic pre-

dictors and proxies for previously identifi ed QTL. Climatic data 

for daily minimum and maximum temperature (°C), daily solar 

irradiance (W m−2), and daily precipitation (mm) at each of the 

experimental sites in each year were obtained from the High 

Plains Regional Climate Center, University of Nebraska, Lin-

coln, NE. On the basis of the winter wheat development model 

developed by Streck et al. (2003), the winter wheat growing 

season was divided into three periods based on developmental 

stages: 1, seedling emergence to terminal spikelet initiation; 2, 

terminal spikelet initiation to anthesis; and 3, anthesis to physi-

ological maturity. In addition to these three periods, total pre-

cipitation during 3 mo before sowing was also used to consider 

soil moisture before sowing in the analyses. Stored soil moisture 

is important in arid agriculture. A total of 10 environmental 

covariates were considered for this study: T1, T2, T3, SR1, 

SR2, SR3, P0, P1, P2 and P3, where T stands for mean daily 

temperature; SR stands for total solar irradiance; P stands for 

total precipitation; the suffi  x 0 stands for the 3 mo period before 

sowing; and suffi  xes 1, 2, and 3 for the fi rst, second, and third 

development periods, respectively.

Environmental covariates for the fi rst two developmental 

periods were used to model SPSM and KPS GEIs, since pre-

anthesis environmental conditions were most critical for those 

traits (Donmez et al., 2001). In a similar way, environmental 

covariates for the last two developmental periods were used to 

model TKW GEI since this trait is mostly infl uenced by the 

environmental conditions during reproductive and grain-fi ll-

ing periods (Donmez et al., 2001). Since YLD is aff ected by all 

yield components, which are associated with diff erent stages of 

development, all environmental covariates were used to model 

YLD GEI. Total precipitation for 3 mo before sowing was also 

used for modeling all yield and yield component GEIs to con-

sider pre-sowing soil moisture.

Defi nition of Variables
Structural equation modeling requires that variables be identi-

fi ed as either exogenous or endogenous. Exogenous variables are 

those determined outside of the system and are always used as 

independent variables (predictor variables) whereas endogenous 

variables are determined by the system and are used as depen-

dent as well as independent variables in the system of equations. 

Since our objective was to model yield GEI, observed yield 

and yield component residuals (YLD
GEI

, TKW
GEI

, KPS
GEI

, and 

SPSM
GEI

) were used as the measured endogenous Y variables. 

These residuals were obtained by subtracting the estimated main 

eff ects of genotypes, environments and blocks within environ-

ments from observed values. As an example, for variable Y, Y
GEI

 

= Y − G − E − B(E) where G and E are genotype and environ-

ment main eff ects and B(E) is the eff ect of block nested in envi-

ronment. The exogenous variables (X
ij
) were the cross-products 

of the ith genotypic covariate and jth environmental covariate. 

Since genotype and environment main eff ects were removed 

from the endogenous variables, the only feasible exogenous 

variables were those that were cross-products of genotypic 

and environmental covariates, and no environmental or geno-

typic covariates by themselves were considered in the model. 

In addition, because yield and yield component residuals were 

modeled, exogenous variables (X ) were also adjusted for main 

eff ects. For example, let Y
i
 be a column vector of the ith endog-

enous variable, and, Z and X be exogenous variables where Z 

is the incidence matrix of the main eff ects for genotype, envi-

ronment and block within environment. Then the full linear 

model is: Y
i
 = Zβ

1
 +Xβ

2
 + e

i
. After fi tting the main eff ects of 

genotype, environment, and block within environment (Z), the 

vector of residuals is, Y
i 
− Zβ

1
0 = [I − Z(Z`Z)−1Z`]Y

i
, where 

β
1
0 is the estimate for β

1
 which equals (Z`Z)−1Z`Y

i
. The result-

ing reduced model is (I − P
z
)Y

i
 = (I − P

z
)Xβ

2
 + d

i
, where P

z
 = 

Z(Z`Z)−1Z` and, d
i
 = (I − P

z
)e

i
. As our primary interest was to 

estimate β
2
 in the reduced model, we adjusted variable X with 

I − P
z
 before using it as a predictor. This adjustment allowed 

us to get estimates equivalent to what we would get by fi tting 

the full model and were based on standard linear model theory 

(Searle, 1971; Ravishanker and Dey, 2002; Dhugana, 2004). 

All plot observations for all Y and X variables used in this study 

were adjusted for I − P
z
 to remove main eff ects of genotypes, 

environments, and blocks as described in the example.

Statistical Model Formulation
Prior knowledge of the directions of causal relationships among 

the variables as required by SEM, was based on the causal, uni-

directional relationships among yield components for small 

grains proposed by Dofi ng and Knight (1992). They proposed 

these relationships among yield components because: (i) yield 

components develop sequentially, with later-developing com-

ponents being controlled by earlier-developing ones (Adams, 
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1967; Thomas et al., 1970; Hamid and Grafi us, 1978; García del 

Moral et al., 1991; Dofi ng and Knight, 1992), and (ii) the unidi-

rectional model more realistically refl ects operative causal rela-

tionships among yield components than a bidirectional model. 

The unidirectional path model has been used in most of the 

recent yield component analysis for small grains (Donaldson et 

al., 2001; García del Moral et al., 2003; Maman et al., 2004).

The model was algebraically specifi ed using SEM with 

observed variables (Model 1) (Bollen, 1989):

Y = BY + ΓX + ζ  [1]

where Y is a 4 × 1 vector of endogenous residual variables: YLD
GEI

, 

TKW
GEI

, KPS
GEI

, and SPSM
GEI

; B is the 4 × 4 coeffi  cient matrix 

with parameters, much like regression coeffi  cients, that quantify 

the causal relationships among endogenous variables:

B =

 
X is a q × 1 vector of (I − P

z
) adjusted exogenous variables, 

where q = number of cross-products of genotypic covariates 

with environmental covariates (X
ij
) retained in the model; Γ 

is the 4 × q coeffi  cient matrix that shows the causal relation-

ship among endogenous and exogenous variables; ζ is the 4 

× 1 disturbance vector associated with endogenous variables 

and is assumed to have E(ζ) = 0 and covariance matrix, E(ζζ`) 

= Ψ and uncorrelated with the exogenous variables. It is also 

assumed that (I − B) is nonsingular so that (I − B)−1 exists. 

Generally, B is a triangular matrix with zeroes on its diagonal.

It is important to note that Model 1 is a generalization of 

factorial regression. After simplifi cation, Model 1 becomes Y = 

(I − B)−1ΓX + (I − B)−1ζ and by letting υ = (I − B)−1Γ and f = 

(I − B)−1ζ, results in a multivariate factorial regression model, Y 

= υX + f. Each row of this model represents a factorial regression 

model for each dependent variable (YLD
GEI

, TKW
GEI

, KPS
GEI

, 

and SPSM
GEI

) as a function of (I − P
z
) adjusted cross product 

covariates (X
ij
). Here υ is a 4 × q coeffi  cient matrix showing the 

eff ect of q cross product terms on yield and yield components 

GEIs. By using SEM, we are able to estimate υ in terms of B 

and Γ, which provide additional insight into how covariates con-

tribute to yield GEI directly and indirectly via yield component 

GEIs, how yield component GEIs are interrelated, and which 

yield component GEI explained most of the yield GEI variance. 

With Γ = 0, Model 1 becomes a path model for yield compo-

nents residuals (YLD
GEI

, TKW
GEI

, KPS
GEI

, and SPSM
GEI

).

Estimation
Conceptually, SEM parameters are estimated by minimizing 

the diff erence between the observed covariance matrix (∑ in 

Eq. [2]) and the model-predicted covariance matrix {∑(θ) in 

Eq. [3], where θ contains the elements of model parameters B, 

Γ, Ψ} (Bollen 1989). The observed covariance matrix (∑) and 

the model-predicted covariance matrix [∑(θ)] were defi ned as

∑ = 
yy yx

⎛ ⎞Σ Σ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜Σ Σ ⎟⎜⎝ ⎠`  [2]

and

∑(θ) = 

( ) ( )( ) ( )

( )

1 1 1

1

` `

`

xx xxI B I B I B

I B

− − −

−

⎛ ⎞⎡ ⎤ ⎟⎜ − ΓΣ Γ +Ψ − − ΓΣ⎢ ⎥ ⎟⎜ ⎟⎣ ⎦⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎡ ⎤ ⎟⎟⎜ ⎢ ⎥ ⎟⎜ ⎟⎣ ⎦
`

 

[3]

where ∑
yy
, ∑

xx
, ∑

yx
 denote the covariance matrices of the 

observed Y, X and between Y and X variables with orders p 

× p, q × q and p × q, respectively. Note that the corvariances 

among the exogenous variables ∑
xx

 were explicitly incorpo-

rated in the model as described in Eq. [3]. The covariance 

matrix of all variables, ∑ was of order (p + q) × (p + q). The 

model implied covariance matrix, ∑(θ) (Eq. [3]) was obtained 

by using Eq. [1] and its reduced form Y = (I − B)−1ΓX + (I − 

B)−1ζ. The total number of model parameters to be estimated 

was t = number of path coeffi  cients + number of error vari-

ances for the endogenous variables (p) + number of variances 

and covariances between all exogenous variables (1/2)[q(q+1)]. 

Maximum likelihood (ML) was used to estimate θ where non-

linear optimization was used to maximize the ML fi t function 

(Eq. [4]) (Bollen, 1989; Schumacker and Lomax, 1996).

F
ML

 = log|∑(θ)| + tr{ ∑ ∑−1(θ)} − log |∑| − (p + q) [4]

The analysis was conducted with all plot observations adjusted 

for genotype, environment, and block within environment 

eff ects using the SAS PROC CALIS procedure (SAS Insti-

tute, 1999) with the ML estimation method following the steps 

laid out by Hatcher (1998). The fi nal PROC CALIS program 

is given in Table 1. Important exogenous variables (X
ij
) were 

identifi ed by using an SEM forward selection procedure where 

the fi nal structural equation model was developed by fi tting 

successive models and retaining signifi cant exogenous variables 

which resulted in a better-fi tting model.

Evaluation of Model Fit
The χ2 statistic is (n − 1) times the fi t function (F

ML
), where 

n is number of observations (Schumacker and Lomax, 1996). 

A nonsignifi cant chi-square value (P > 0.05) indicates that 

the two matrices [∑ and ∑(θ)] are not statistically diff erent. 

The degrees of freedom (df ) associated with χ2 are deduced 

as: df = (1/2)(p + q)(p + q + 1) − t, where p + q is the num-

ber of observed variables analyzed and t is the total number of 

Table 1. SAS PROC CALIS statements for the fi nal model.†

PROC CALIS COVARIANCE METHOD = ML DATA = DSET1 RESIDUAL 

TOTEFF MODIFICATION GCONV = .0001 MAXITER = 10 000 MAXFUNC 

= 10 000;

LINEQS

SPSM
GEI

 = b1 rmt11 + b2 rmp42 + b3 rmt32 + E1,

KPS
GEI

 = a1 SPSM
GEI

 +b4 rmp10 + b5 rmp41 + b6 rmt61 + E2,

TKW
GEI

 = a2 SPSM
GEI

 + a3 KPS
GEI

 +b7 rms12 + b8 rmt22 + E3,

YLD
GEI

 = a4 SPSM
GEI

 + a5 KPS
GEI

 + a6 TKW
GEI

 + b9 rmt32 + b10 

rmp41 + b11 rmp10 + E4;

STD

E4 = VARE4,

E3 = VARE3,

E2 = VARE2,

E1 = VARE1;

run;

† rmt11 = Tam055*T1; rmp42 = Bcd1555*P2; rmp32 = Xbarc67*T2; rmp10 = 

Tam055*P0; rmp41 = Bcd1555*P1; rmt61 = Ksua6*T1; rms12 = Tam055*SR2; 

rmt22 = Xbarc86*T2. ais and bis are path coeffi cients associated with yield and 

yield components residuals and cross-product covariates, respectively. Note: all 

cross-product covariates are adjusted for main effects. GEI, genotype-by-environ-

ment interaction; SPSM, spikes per square meter; KPS, kernels per spike; TKW, 

thousand kernel weight.
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parameters estimated. The χ2 test is sensitive 

to sample size (Schumacker and Lomax, 1996), 

however, it is the only statistical test available to 

test the overall fi t of the model. Several good-

ness-of-fi t indices (GFI, AGFI, and NFI) were 

used to evaluate the fi t of the structural equa-

tion model. GFI is the percentage of observed 

covariances explained by the model implied 

covariances (Pugesek, 2003; Schumacker and 

Lomax, 1996). GFI = F
ML

/F
0
, where F

0
 is the 

fi t function for the null model (i.e., when B = 

0 and Γ = 0 in Eq. [1]). When the df is large 

relative to the sample size, GFI is biased down-

ward (Kline, 1998). The AGFI is a variant of 

GFI which uses mean squares instead of total 

sums of squares. Equivalently, the AGFI adjusts 

the GFI for the df of a model relative to the 

number of variables (Schumacker and Lomax, 

1996; Jöreskog and Sorbom, 1996). NFI refl ects 

the proportion by which the proposed model 

improves the fi t compared to the null model 

(Bentler and Bonnett, 1980; Schumacker and 

Lomax, 1996) and is given by (χ2
null

 − χ2
model

)/

χ2
null

. GFI, AGFI, and NFI values range from 

zero to one, with one for the best possible fi t.

Nonsignifi cant χ2 and GFI, AGFI, and NFI 

values greater than or equal to 0.90 were used 

to justify the fi nal model. The squared multiple 

correlation, R2 for each yield and yield com-

ponent was reported. The results were inter-

preted using standardized coeffi  cients and by 

calculating the total direct and indirect eff ects 

of the cross-product covariates (X
ij
) and yield-

component GEIs on yield GEI.

RESULTS AND DISCUSSION

Six selected DNA marker loci (Xtam055, Xbarc86, 
Xbarc67, Xksua6, Xbcd1555, and Xbcd361), each closely 
linked with a diff erent QTL and 10 environmental covari-
ates (T1, T2, T3, P0, P1, P2, P3, SR1, SR2, and SR3) 
were used to defi ne all possible cross-products which were 
adjusted for the main eff ects of genotype and environment 
as described above and used as exogenous variables. Grain 
yield and yield components (YLD

GEI
, TKW

GEI
, KPS

GEI
, 

and SPSM
GEI

) were also adjusted for genotype and environ-
ment eff ects and used as endogenous variables. The fi nal 
model fi t well as demonstrated by a nonsignifi cant χ2(χ2

(21)
 

= 14.65, P = 0.84) and the GFI, AGFI, and NFI goodness-
of-fi t indices all being considerably greater than 0.95. Exog-
enous variables retained in the fi nal model had a signifi cant 
path to at least one of the endogenous variables (Fig. 1). 
The correlations between the exogenous variables in the 
fi nal model ranged from −0.64 to 0.84 with six coeffi  cients 
being signifi cant, P < 0.05 (data not shown).

The R2 values for all endogenous variables are reported 
in Table 2. Approximately 74% of the variation in total GEI 
for grain yield (YLD

GEI
) was accounted for by the model. 

Based on the standardized path coeffi  cients, GEI for SPSM 
had a greater positive direct eff ect (P < 0.001) on yield GEI 
than KPS and TKW GEIs (Fig. 1). Since SPSM GEI had 
large negative direct eff ects on KPS and TKW GEIs, the 
net total eff ect of SPSM GEI on yield GEI was less than the 
direct eff ect (Table 2). This positive total eff ect revealed that 
higher SPSM than what we expect from the additive geno-
typic and environmental eff ects resulted in a relatively large 
positive increase in yield GEI which ultimately increased 
grain yield. However, only about 3% of the variation in 
GEI of SPSM was explained by the three marker × envi-
ronmental covariate interactions retained in the model (Fig. 
1). Signifi cant direct positive eff ects (P < 0.001) of KPS and 
TKW GEIs on yield GEI were also observed but they were 
smaller than the eff ect of SPSM GEI.

Eight marker × environmental covariates which had 
statistically signifi cant path coeffi  cients (P < 0.05) were 
retained in the fi nal model. Of those, Xbarc67 × T2 showed 
a signifi cant positive direct eff ect on yield GEI and indirect 

Figure 1. Path estimates of structural equation model of yield genotype-by-environment 

interaction (YLD
GEI

), yield component GEIs (spikes per square meter [SPSM
GEI

], kernels 

per spike [KPS
GEI

], and thousand kernel weight [TKW
GEI

]), and adjusted cross-products 

(marker * environmental covariate). T, mean daily temperature; SR; total solar irradiance; 

P, total precipitation; suffi x 0, the 3-mo period before sowing; 1, the fi rst developmental 

period; 2, the second developmental period; and 3, the third developmental period. 

Arrows represent the direction of infl uence of variables. The numbers by the arrow 

lines represent the estimated standardized coeffi cients. The terms ε
4
, ε

3
, ε

2
, and ε

1
 are 

the disturbance terms for yield and yield components and represent the unexplained 

variances of those variables. Covariances among all cross-product variables were 

estimated as part of the model but arrows among these variables were excluded to 

simplify the fi gure. Signifi cance level: ***P < 0.001; **P < 0.01; *P < 0.05.
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eff ect through SPSM GEI on yield GEI (Fig. 1). Even after 
considering the negative indirect eff ects of Xbarc67 × T2 
through SPSM GEI, the net eff ect of Xbarc67 × T2 on yield 
GEI was found to be larger than the eff ects of other covari-
ates (Table 2). The diff erence between WI and CNN geno-
types at Xbarc67, for both SPSM and yield, was sensitive 
to temperature from terminal spikelet initiation to anthesis 
(T2) and increased as temperature increased. Two other 
covariates, Xtam055 × P0 and Xbcd1555 × P1 had direct 
and indirect eff ects on yield GEI that were generally smaller 
than those of Xbarc67 × T2, however, the direct eff ects 
were positive, while the indirect eff ects through KPS

GEI
 

were negative (Fig. 1). Campbell et al. (2004) also found a 
large Xbarc67 × T2 eff ect on yield GEI, however, they did 
not fi nd eff ects of either Xtam055 × P0 or Xbcd1555 × P1. 
Campbell et al. (2004) likely did not fi nd these covariates 
related to yield GEI since the total net eff ects were small 
and they used factorial regression which is only capable of 
detecting total eff ects.

Three marker × environmental covariate interactions 
(Xtam055 × T1, Xbarc67 × T2, and Xbcd1555 × P2) 
that were retained in the model were predictors of GEI 
in SPSM (Fig. 1). The large positive eff ect of Xtam055 × 
T1 on SPSM

GEI
 indicated that higher temperatures from 

seedling emergence to terminal spikelet initiation pro-
vided relatively more favorable conditions for WI geno-
types at Xtam055 for spike development. Similarly, the 
positive coeffi  cient between Xbarc67 × T2 and SPSM

GEI
 

implied that higher temperatures in the second growth 
(T2) period were relatively more favorable for the WI 
genotype at Xbarc67 than CNN in terms of SPSM. The 
negative coeffi  cient between Xbcd1555 × P2 and SPSM 
GEI showed that increased precipitation in the repro-

ductive period (P2) was relatively less favorable for the 
WI genotype at Xbarc67 than CNN in terms of SPSM. 
Campbell et al. (2004) also found Xtam055 × T1 to have 
the largest eff ect on SPSM

GEI
 and although they did not 

fi nd a relationship between Xbarc67 × T2 and SPSM
GEI,

, 
they did fi nd similar covariates containing markers near 
Xbarc67 (Xksua6 × P1, Xksua6 × T1, and Xbcd366 × 
T1) that were related to SPSM

GEI
.

The negative relationship between Xbcd1555 × P1 and 
KPS GEI (KPS

GEI
) suggested that increased precipitation 

during vegetative growth (P1) was relatively less favorable 
for the WI genotype for KPS. However, the small sig-
nifi cant direct positive eff ect of Xbcd1555 × P1 on yield 
GEI nullifi ed the indirect negative eff ect of this covari-
ate through KPS

GEI
 (Table 2). KPS

GEI
 was also aff ected by 

Xksua6 × T1 and Xtam055 × P0 where the positive eff ect 
of Xksua6 × T1 on KPS

GEI
 was interpreted in a manner 

similar to Xtam055 × T1 on SPSM
GEI

. The negative rela-
tionship between Xtam055 × P0 and KPS

GEI
 indicated 

that increased soil moisture during the pre-sowing period 
(P0) was relatively less favorable for WI genotypes com-
pared to CNN at Xtam055. Similar results were reported 
in Campbell et al. (2004) in that the largest two covariates 
associated with KPS

GEI
 were Xksua6 × T1 and Xksua6 × 

P1, however, they did not fi nd signifi cant covariates con-
taining either Xtam055 or Xbcd1555 which possibly could 
have been due to their factorial regression model failing to 
account for SPSM

GEI
 as a predictor variable of KPS

GEI
 as in 

the structural equation model used here.
Both Xbarc86 × T2 and Xtam055 × SR2 were 

positively related to TKW
GEI

, while kernel weight GEI 
(TKW

GEI
) was aff ected by Xbarc86 × T2 and Xtam055 × 

SR2. Campbell et al. (2004) found TKW
GEI

 was related 
to covariates with markers from similar areas on chromo-
some 3A (Xbarc86 × SR3, Xbcd366 × SR3, Xbarc67 × 
SR3). They did not fi nd a covariate with markers close 
to Xtam055, however, which could have been due to 
their factorial regression model not including KSP

GEI
 or 

SPSM
GEI

 as other predictor variables.
These signifi cant relationships between yield and 

yield component GEIs suggest that our understanding of 
yield GEI can be enhanced by identifying the genotype 
and environmental factors that contribute to the GEIs in 
TKW, KPS, and in particular, SPSM. Hence, in future 
GEI studies, more eff ort should be focused on fi nding fac-
tors that predict yield component GEIs to improve our 
understanding of the molecular character of genes that 
control important traits.

The positive coeffi  cient between Xbarc67 × T2 and 
SPSM

GEI
 implied that higher temperatures in the second 

growth (T2) period were relatively more favorable for the 
WI genotype at Xbarc67 than CNN in terms of SPSM. 
The higher temperature may have provided favorable con-
ditions to form more spikes or to prevent the formed spikes 

Table 2. Direct, indirect and total effects of yield component 

genotype-by-environment interactions (GEIs) and adjusted 

cross-product covariates on grain yield GEI (R2 = 0.74). 

Variables† Direct 
effect

Indirect 
effect

Total 
effect 

R2‡

Thousand kernel weight GEI 0.47 0 0.47 .26

Kernels per spike GEI 0.71 −0.16 0.55 .42

Spikes per square meter GEI 1.25 −0.64 0.61 .03

Xbarc67 × T2 0.07 0.07 0.14

Xtam055 × T1 0 0.07 0.07

Xtam055 × SR2 0 0.04 0.04

Xtam055 × P0 0.07 −0.04 0.03

Xbarc86 × T2 0 0.05 0.05

Xbcd1555 × P2 0 −0.07 −0.07

Xbcd1555 × P1 0.05 −0.05 0

Xksua6 × T1 0 0.05 0.05

† T, mean daily temperature; SR, total solar irradiance; P, total precipitation. The 

suffi x 0 stands for the 3-mo period before sowing; 1, for the fi rst developmental 

period; 2, for the second developmental period; and 3, for the third developmental 

period.

‡ R2 refers to percentage of variation explained on total GEI for given trait accounted 

for by the model.
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from being aborted. These results are logical in that WI was 
developed in Kansas and CNN in Nebraska. The higher 
temperatures during development would be more similar 
to the “Kansas” environment where WI genotypes would 
be favored. Campbell et al. (2004) also identifi ed Xbarc67 
× T2 as the largest marker × environmental covariate 
interaction responsible for yield GEI using individual facto-
rial regression. However, our results demonstrate a deeper 
understanding of the yield GEI by showing that the eff ect 
of Xbarc67 × T2 on yield GEI was partly due to its direct 
eff ect and partly due to its indirect eff ect via KPS GEI and 
TKW GEI. The negative relationships of Xbcd1555 × P1 
with KPS

GEI
 and Xbcd1555 × P2 with SPSM

GEI
 could mean 

that WI is more drought tolerant than CNN since it was 
developed in hotter Kansas environments.

In this study, we have demonstrated a fl exible method 
to study GEI using quantitative traits. This approach targets 
genes on an individual chromosome via chromosome substitu-
tion lines and RICLs and utilizes a single, biologically relevant 
model incorporating causal relationships among interrelated 
traits and environmental factors via SEM. Unlike traditional 
QTL and GEI approaches, a biologically meaningful conclu-
sion can be reached within the scope of this approach, since 
complex direct and indirect relationships among genetic and 
environmental variables are accounted for. An “all inclusive” 
model is increasingly important to consider when studying 
complex traits of interest (e.g., grain yield) in wheat and other 
higher plants. Grain yield in wheat is known to be controlled 
by yield-component traits that are interrelated, have compensa-
tory eff ects, develop sequentially at diff erent growth stages, and 
have large GEIs. The large wheat grain-yield GEI associated 
with genes on chromosome 3A has been explained by direct 
eff ects of TKW and direct and indirect eff ects of SPSM and 
KPS. Moreover, the known GEI associated with the expres-
sion of grain yield QTL previously detected on chromosome 
3A can be explained by the direct and indirect eff ects of yield 
component QTL-by-environmental covariate interactions 
represented by molecular markers linked to those QTL.

Many of the most popular methods used to analyze GEI, 
such as the AMMI model, factorial regression, and stability 
analysis, are based on univariate models that have a single 
trait as the dependent variable where each trait is analyzed 
and interpreted separately (Kang and Gauch, 1996; Vargas et 
al., 1999; Crossa et al., 1999; Campbell et al., 2004). These 
univariate approaches can provide considerable insight but 
generally are not helpful in describing the complex relation-
ships among traits and variables present in GEI. In most GEI 
studies, each trait is separately analyzed without including 
other traits as predictors with the consequence of not being 
able to detect the eff ects of other traits or to obtain a compre-
hensive understanding of GEI. Factorial regression and par-
tial least squares models as proposed by Crossa et al. (1999) 
and Vargas et al. (1999) may be used to incorporate other 
traits as independent variables but even these models are 

limited in that they are not conducive to depicting complex 
causal relationships among variables and they cannot account 
for indirect infl uences of other traits, QTL, or environmen-
tal variables acting through intermediate variables on GEI of 
the trait of interest. Such indirect infl uences are well known 
and expected in yield and yield components analysis and are 
important in understanding GEI of yield.

Structural equation modeling, unlike most univariate 
approaches, can be used to develop a succinct, graphic, and 
comprehensive view of how traits, genetic factors, and envi-
ronmental variables all work together as a system to aff ect 
GEI. Structural equation modeling allows one to decom-
pose relationships among traits, QTL, and environmental 
variables into direct and indirect causal relationships that aid 
with understanding how genes interact with environmental 
factors to aff ect GEI of important agronomic traits. With 
SEM, the direction of the causal relationships is described 
through a path diagram and the model is then algebraically 
specifi ed by a system of regression-type equations meaning 
that any GEI method based on linear models, such as facto-
rial regression, can be considered a special case of SEM. In 
general, SEM can provide insight into processes that can be 
modeled as systems of linear equations, such as the GEI of 
yield and yield components in wheat.

This study shows that GEI associated with a complex 
trait such as grain yield is aff ected by a multitude of genetic 
and environmental factors. Given the additional insight 
provided by our approach, using substitution lines in con-
junction with SEM is a reasonable approach for studying 
GEI in other plants and organisms. As genes are identifi ed 
that control complex and agronomically important traits 
such as grain yield (Ashikari et al., 2005), this approach 
can easily be extended to describe how the genes interact 
with the environment to create the needed phenotypes 
with higher and more stable grain yields.
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