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ABSTRACT. A finite element analysis was conducted to obtain theoretical capacitance values for an axisymmetric 
dielectric constant sensor applied to layers of lean and fatty tissues. The sensor was under study as a noninvasive tool for 
determining the fat content of beef cattle and carcasses. A conformal mapping performed on a radial cross-section of the 
probe greatly simplified the analysis by eliminating field singularities at the edges of the conductors and correcting large 
disparities in the sizes of the elements. This coordinate transformation required a modification of the stiffness formula 
used in the finite element analysis. Capacitance values with estimated errors under 0.015% were obtained with a mesh of 
under 2,000 nodes. These values were used to identify deficiencies in an equation, developed from experimental data, 
relating the probe output to tissue thicknesses and dielectric constants. Theoretical capacitance values were needed 
because experimental error was hindering the development of this equation. The information in this article will be of use 
to other researchers who are performing axially symmetric finite element analyses or who are interested in dielectric 
constant measurements on layered materials. 
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The fat content of a beef animal is an important 
factor in determining its value. Adequate 
intramuscular fat (marbling) is required for beef to 
receive a high quality grade. Excess fat, however, 

is a waste material which is expensive to produce. The 
USDA Agricultural Research Service, Instrumentation and 
Sensing Laboratory, Beltsville, Maryland, has been 
investigating non-invasive sensors to measure the fat 
content of animals. One of these sensors is a dielectric 
constant probe which operates at 50 to 150 MHz, shown in 
figure 1. When the probe is applied to the exterior of an 
animal, which is composed of layers of hide, fat, and 
muscle, the capacitance is a function of the thicknesses and 
dielectric constants of the layers of tissue penetrated by the 
probe’s electric field. This capacitance can be expressed as 
an apparent dielectric constant, i.e., the dielectric constant 
of a uniform, semi-infinite material to which the probe 
could be applied to yield the same capacitance. If several 
probes with different field penetration patterns are used on 

the same animal, it should be possible to determine the 
thickness and dielectric constant of each layer of tissue. 
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Figure 1–Coaxial dielectric constant probe for 50 to 150 MHz. 
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The probe has two features which make analysis 
difficult: (1) the sharp outer edge of the center conductor 
and the sharp inner edge of the ground plane create infinite 
voltage gradients; and (2) the electric field occupies an 
unbounded region of space. Such difficulties are sometimes 
eliminated by conformal mapping in two dimensions 
(Chang and Cheng, 1993; Kapoor and Schneider, 1995). 
Conformal mapping was also used to simplify this 
problem, although it was axisymmetric instead of two-
dimensional. The mathematics for doing so are developed 
in this article. 

The dielectric constants of electrical conductors such as 
lean and fatty tissues are complex numbers. In this article, 
the term “dielectric constant” and the symbol ε will refer to 
the relative complex dielectric constant, defined in the 
following equation (Institute of Electrical and Electronic 
Engineers, 1972; Hayt, 1989): 

ε = ε′ – j·σ/(2πf·ε0) = ε′ – j·ε′′ (1) 

where 
ε = the complex dielectric constant 
j =  √–1 
σ = the electrical conductivity of the material (S/m) 
f = the frequency of the excitation signal (Hz) 
ε0= the permittivity of free space (8.854187817 pF/m) 
ε′ = the real part of the dielectric constant 
ε′′= the loss index = σ/(2πf·ε0) 

OBJECTIVES 

The objectives of this project were to: 
1.	 Develop a finite element model to predict the 

capacitance of the dielectric constant probe. 
2.	 Develop a procedure for simplifying an 

axisymmetric finite element problem by the use of 
conformal mapping. 

3.	 Use the results of the finite element model to test the 
formula giving the capacitance of the probe applied 
to a sample consisting of two layers of different 
materials. 

PROBLEM FORMULATION 
The capacitances of the front and rear surfaces of the 

probe appear in parallel. However, only the front surface 
electric field penetrates the sample being measured. The 
rear surface capacitance was considered an unknown 
constant. 

The electric potential at any point in the vicinity of the 
probe was represented as V·ej2πft, where f = frequency, t = 
time, and V is a complex voltage carrying both magnitude 
and phase information. Under the electrostatic 
approximation to Maxwell’s equations, which is valid if the 
wavelength is long compared to the probe dimensions, the 
potential obeys Laplace’s equation: 

∇·[ε0·ε·∇(V·ej2πft)] = 0 (2) 

Finite element analysis solves this equation by finding the 
unique voltage distribution which makes the partial 
derivative of the electric field energy with respect to the 
voltage at any point zero (Sylvester and Ferrari, 1990). The 
field energy E is: 

E = 0.5·ε0·∫ ∫ ∫ε·∇V·∇V·(ej2πft)2·dx·dy·dz (3) 

This field energy is proportional to the probe capacitance 
C: 

E = 0.5·C·(V1·ej2π ft)2 (4) 

where V1·ej2π ft is the voltage applied to the center 
conductor. Combining equations 3 and 4 gives C as a 
function of the voltage distribution in the space around the 
probe: 

C = (ε0/V1
2)·∫ ∫ ∫ε·∇V·∇V·dx·dy·dz (5) 

The factors that convert C to E are not functions of the 
spatial coordinates. Therefore the finite element analysis 
can work with C instead of E and determine the 
capacitance directly. The capacitance is independent of the 
magnitude of the applied voltage, so V1 was set to 1 to 
simplify the equation. 

Since the dielectric constant probe, shown in figure 1, is 
symmetric about an axis through its center, the problem 
reduces to analyzing a radial cross-section, shown in 
figure 2. For this purpose, equation 5 was written in 
cylindrical coordinates (r,θ,z): 

C = ε0·∫ ∫ ∫ε·∇V·∇V·r·dr·dθ·dz (6) 

where 
∇V·∇V = (∂V/∂r)2 + (1/r)2·(∂V/∂θ)2 + (∂V/∂z)2 

Since ∂V/∂θ = 0, equation 6 was reduced to two 
dimensions by integrating with respect to θ from 0 to 2π: 

C = 2π·ε0·∫ ∫ε·[(∂V/∂r)2 + (∂V/∂z)2]·r·dr·dz (7) 

The domain of integration of equation 7 is 0 ≤ r < ∞ and 
0 ≤ z < ∞. Referring to figure 2, the boundary along the 
z-axis is a flux line. The boundary along the r-axis is an 
equipotential with an applied voltage from r = 0 to r = r1, 
corresponding to the center conductor of the probe; a flux 
line from r = r1 to r = r2, corresponding to the gap; and a 
grounded equipotential for r > r2, corresponding to the 
ground plane of the probe. The capacitance obtained was 
that of an idealized probe with an infinite ground plane, 
which could be expected to be slightly smaller than that of 
the physical probe. 

Figure 2–Radial cross-section of the probe. 
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SIMPLIFICATION OF PROBLEMS BY 

CONFORMAL MAPPING 
No finite element software available to the authors at the 

time of this study could analyze this probe because of the 
following complications: (1) the dielectric constants 
involved were complex numbers; and (2) an enormous 
number of elements of widely varying sizes was required 
because of the infinite voltage gradients at the sharp edges 
of the central disc and the ground plane, the small size of 
the gap and the first tissue layer, and the unlimited extent 
of the electric field in the surrounding space. 

Chang and Cheng (1993) used conformal mapping to 
eliminate the last complication in their analysis of 
microstrip lines which, because they could be treated as 
infinitely long, obeyed Laplace’s equation in two 
dimensions. Conformal mapping caused infinite voltage 
gradients located at critical points of the coordinate 
transformation to become finite in the new coordinate 
system and distances far from the field source to be 
compressed. No modifications to the finite element software 
were required, because a system that obeys Laplace’s 
equation in two dimensions before transformation continues 
to do so afterward (Churchill, 1960). 

While an axisymmetric problem can also be reduced to 
two dimensions (r, z), it does not obey Laplace’s equation 
in two dimensions. However, as shown below, a conformal 
mapping can be applied to an axisymmetric problem and a 
finite element analysis performed successfully if we have 
the ability to change stiffness formulas in the finite element 
software. 

Conformal mapping is applied in the following four 
steps (Churchill, 1960): 

1.	 Combine the original coordinates r and z into the 
complex number P = r + j·z 

2.	 Combine the transform coordinates x and y into the 
complex number W = x + j·y. 

3.	 Relate W to P by an analytic function. 
4.	 Re-write the capacitance in terms of the new 

coordinates x and y. 
Since the two sets of coordinates are related by an analytic 
function, the following relationships hold (Churchill, 
1960): 

dW/dP = Ro·ejϕ = ∂x/∂r + j·∂y/∂r = ∂y/∂z – j·∂x/∂z(8) 

dP/dW = 1/(dW/dP) = Ro–1·e–jϕ = ∂r/∂x + j·∂z/∂x 

= ∂z/∂y – j·∂r/∂y (9) 

∂x/∂r = ∂y/∂z = Ro·cos(ϕ) (10) 

∂y/∂r = –∂x/∂z = Ro·sin(ϕ) (11) 

∂r/∂x = ∂z/∂y = cos(ϕ)/Ro (12) 

∂r/∂y = –∂z/∂x = sin(ϕ)/Ro (13) 

In these equations, Ro is the magnification factor and ϕ 
is the angle of rotation. The Jacobian of the transformation 
is: 

∂(r,z)/∂(x,y) = ∂r/∂x·∂z/∂y – ∂r/∂y·∂z/∂x = 1/Ro2(14) 

So the capacitance integrated in the new coordinates is: 

C = (2π·ε0)·∫ ∫ε·[(∂V/∂r)2 

+ (∂V/∂z)2]·r·(1/Ro2)·dx·dy (15) 

The partial derivatives of the voltage are still expressed 
in terms of r and z. However, the chain rule for partial 
derivatives gives: 

∂V/∂r = ∂V/∂x·∂x/∂r + ∂V/∂y·∂y/∂r 

= [∂V/∂x·cos(ϕ) + ∂V/∂y·sin(ϕ)]·Ro (16) 

∂V/∂z = ∂V/∂y·∂y/∂z + ∂V/∂x·∂x/∂z 

= [∂V/∂y·cos(ϕ) – ∂V/∂x·sin(ϕ)]·Ro (17) 

Squaring equations 16 and 17 and adding them gives: 

(∂V/∂r)2 + (∂V/∂z)2 = [(∂V/∂x)2 + (∂V/∂y)2]·Ro2(18) 

Thus the capacitance can be expressed completely in the 
new coordinates as: 

C = (2π·ε0)·∫ ∫ε·[(∂V/∂x)2+(∂V/∂y)2] 

× Ro2·r(x,y)·(1/Ro2)·dx·dy (19) 

The magnification factor Ro cancels out of the formula, 
leaving: 

C = (2π·ε0)·∫ ∫ε·[(∂V/∂x)2 

+ (∂V/∂y)2]·r (x,y)·dx·dy (20) 

Thus the ONLY change required by the conformal mapping 
is to replace r by its expression in terms of x and y. 

CONFORMAL MAPPING APPLIED TO THE 

DIELECTRIC CONSTANT PROBE 
The analytic function which eliminates the infinite 

voltage gradients of the dielectric constant probe is 
(Churchill, 1960, Appendix 2 and pg 89): 

P = 0.5·(r2 – r1)·sin(W) + 0.5·(r2 + r1) (21) 

where r1 is the radius of the central disc, and r2 is the inner 
radius of the ground plane. Another way to write the same 
transformation is: 

r = 0.5(r2 – r1)·sin(x)·cosh(y) + 0.5(r2 + r1) 

z = 0.5(r2 – r1)·cos(x)·sinh(y) (22) 

Inserting the above formula for r into equation 20 gives: 

C = π·ε0·∫ ∫ε·[(∂V/∂x)2 + (∂V/∂y)2] 

× [(r2 – r1)sin(x)cosh(y) + (r2 + r1)]·dx·dy (23) 

VOL. 42(3): 819-826 821 



Factoring the constant (r2 + r1) out of the integral in 
equation 23 gives: 

C = π· r2 + r1 ·ε0· ε· ∂V/∂x 2+ ∂V/∂y 2 

r2 – r1× sin x cosh y  + 1 ·dx·dy (24)
r2 + r1

This formula can be simplified by defining two 
constants q1 = π·(r2 + r1)·ε0 and q2 = (r2 – r1)/(r2 + r1). 
Then equation 24 becomes: 

C = q1·∫ ∫ε·[(∂V/∂x)2 + (∂V/∂y)2] 

× [1 + q2·sin(x)cosh(y)]·dx·dy (25) 

Figure 2 shows the dielectric constant probe in the (r,z) 
system, applied to a two-layer sample. Figure 3 shows the 
probe in the (x,y) system. The field singularities in the 
original problem are finite in the transformed problem 
because they coincide with the critical points of the 
transformation at (x,y) = (±π/2,0). The point (–π/2,0) 
corresponds to the edge of the center conductor at (r,z) = 
(r1,0). The point (π/2,0) corresponds to the inner edge of 
the ground plane at (r,z) = (r2,0). The x-axis between –π/2 
and π/2 corresponds to the gap between the conductors. 
The transformation folds the center conductor and the 
ground plane parallel to the y-axis. The centerline of the 
probe and the boundary between the dielectrics become 
curved. 

In addition to eliminating the singularities in the original 
problem, the coordinate transformation enlarges the region 
near the gap between the conductors and compresses 
regions far from the gap logarithmically. This space 

Figure 3–Probe transformed by conformal mapping. 

distortion makes the energy density more uniform in the 
transformed coordinates and greatly facilitates mesh 
generation. It also allows fairly small rectangular elements 
at large y values to represent enormous regions of space far 
from the probe. 

PROGRAM 
Although conformal mapping simplified the mesh and 

eliminated the infinite voltage gradients, it still did not 
enable the software available to the researchers to analyze 
the probe, so a new finite element program was written in 
Microsoft Fortran. This program allowed complex 
dielectric constants and, to allow the use of transformed 
coordinates, allowed the energy function to be modified. 
The program allowed the problem domain to be divided 
into quadratic elements with one node at each corner and 
one in the middle of each side. The curved sides possible 
with such elements provided a good fit to the curved 
boundaries in the transformed problem. Quadratic elements 
also converge to the correct answer more quickly than 
linear elements as the mesh is refined (Sylvester and 
Ferrari, 1990). Both triangular and parallelogram elements 
were used. A parallelogram was required to have straight 
sides, while a triangle was allowed one curved side. 
Parallelograms were used wherever possible, in order to 
reduce the total number of elements and allow faster 
program execution. 

When the space around the probe is divided into 
elements, the integral giving the capacitance C (eq. 25) can 
be expressed as a sum of integrals performed on the 
individual elements: 

ne 

C = ∑ Ce (26) 
e = 1  

where 
Ce = q1·εe·∫ ∫[(∂V/∂x)2+(∂V/∂y)2] 

× [1 + q2·sin(x)cosh(y)]·dx·dy (27) 

Here ne = the total number of elements, and the integral Ce 
in equation 14 is performed only over element e. The 
dielectric constant εe is taken out of the integral because it 
is constant over element e. To assure that εe was indeed a 
constant for all elements, the boundary lines between 
materials with different dielectric constants were made to 
coincide with element boundaries. 

The voltage distribution within element e is 
approximated by: 

V(x,y) = ΣnVn·Ln,e(x,y) (28) 

where 
Vn = the voltage at node n 
Ln,e(x,y) =  the shape function for node n within 

element e 

Shape functions are described by Sylvester and Ferrari 
(1990). They are defined so Ln,e(x,y) = 1 at node n, 
Ln,e(x,y) = 0 at all other nodes and everywhere outside of 
element e, and V(x,y) is continuous across the boundaries 
between elements. Performing the operations in 
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equation 27 using the approximate voltage distribution 
(eq. 28) converts equation 27 to: 

Ce = ΣnΣmVn·Vm·Sn,m,e (29) 

where Sn,m,e is a constant called the “local stiffness” 
between nodes n and m in element e. When the Ces are 
summed to obtain C, the formula becomes: 

C = ΣnΣmVn·Vm·Sn,m (30) 

where Sn,m is the stiffness between nodes n and m. If nodes 
n and m both appear on two elements e1 and e2, then 
Sn,m = Sn,m,e1 + Sn,m,e2. In matrix form, equation 30 is: 

C = [V]′·[S]·[V] (31) 

where [V] is the vector of node voltages, [S] is the stiffness 
matrix, and [V]′ is the transpose of [V]. Sn,m = Sm,n, so [S] 
is symmetric. 

If the known node voltages on the ground plane and 
center conductor are separated from the unknown voltages 
elsewhere, equation 31 becomes: 

C = [Vu]′·[Suu]·[Vu] + 2·[Vu]′·[Suk]·[Vk] 

+ [Vk]′·[Skk]·[Vk] or 

C = [Vu]′·[Suu]·[Vu] + 2·[Vu]′·[B] + C1 (32) 

where 
[Vu] = the unknown node voltages 
[Vk] = the known node voltages 
[Suu] = the matrix of stiffnesses between pairs of 

unknown node voltages 
[Skk] = the matrix of stiffnesses between pairs of known 

node voltages 
[Suk] = the matrix of stiffnesses between known and 

unknown voltages 
[B] = [Suk]·[Vk] = a vector of known constants 

C1 = [Vk]′·[Skk]·[Vk] = a known constant


The problem was solved by setting the partial derivatives of 
C with respect to all the unknown node voltages equal to 
zero and solving the resulting system of linear equations 
for the voltages: 

∂C/∂[Vu] = [Vu]′·[Suu] + [Suu]·[Vu] + 2·[B] = 0 (33) 

The matrix [Suu] is symmetric, so equation 20 reduces to: 

[Suu]·[Vu] = –[B] (34) 

Both C1 and [B] were built up while the stiffnesses were 
being calculated. The stiffness matrix [Suu] is a symmetric, 
banded matrix. Modifications of the LINPACK subroutines 
ZGBFA and ZGBSL (Dongarra et. al., 1979) were used to 
solve the equations to obtain [Vu]. Substituting 
[Suu]·[Vu] = –[B] into equation 32 gives: 

C = [Vu]′·[B] + C1 (35) 

or 
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C = C1 – [B]′·[Suu]-1·[B] (36) 

ERROR ESTIMATION 
The calculated capacitance has four error components: 
1.	 Roundoff error is caused by the limited precision of 

the computer. This error was minimized by doing 
all calculations in double precision. 

2.	 Stiffness approximation error is caused by the use 
of numerical integration to calculate stiffnesses. 
Within a straight-sided parallelogram element, 
stiffnesses were calculated by integrating the 
product of a polynomial with sin(x)·cosh(y). This 
was done by a power series approximation to an 
accuracy of about one part in 1015. For a triangular 
element with one curved side, sin(x)·cosh(y) was 
multiplied by a rational function with a linear 
denominator and a 36-point Gauss-Legendre 
integration was performed. 

3.	 Discretization error is caused by the true voltage 
distribution not being a quadratic polynomial. This 
error is theoretically proportional to the fourth 
power of the linear dimensions of the elements 
(Sylvester and Ferrari, 1990). 

4.	 Field truncation error is caused by the inability of 
the program to model fields extending to infinity. 
This error was minimized by extending the model 
to y = 7, which corresponds to a shell around the 
probe at a distance of 0.487 m. The size of the error 
was estimated by comparing the capacitance 
calculated with the line at y = 7 grounded to the 
capacitance calculated with the same line 
ungrounded. The difference was approximately 
0.01%. 

The approximation and discretization errors both 
decrease as the mesh is refined. However, solving the 
simultaneous equations magnifies the effects of the 
roundoff and stiffness approximation errors. As the mesh is 
refined, the equation set increases in size and becomes 
more ill-conditioned, increasing the error magnification. If 
the mesh is made too fine, the result may no longer 
converge to the correct answer. 

MESH GENERATION 
A semi-automatic mesh generator was written for this 

program. Nodes were considered to be arranged in rows and 
columns. The operator specified the starting y-value of each 
row and the starting x-value of each column. Where the 
rows and columns were curved, the operator specified an 
equation for the curve. The mesh generator created elements 
in the spaces between the intersecting rows and columns. 
Where the sides of the elements were straight and parallel, 
the elements were parallelograms. Otherwise, the elements 
were triangular. As much as possible, the elements were 
made uniform in size and square in shape. The mesh was 
refined manually by increasing the number of rows and 
columns, keeping the elements of the finer mesh similar in 
shape to those of the coarser mesh. Figures 4 and 5 show 
two meshes generated by this procedure. 

An equipotential boundary condition was created by 
assigning a known voltage to the nodes on that boundaries. 
Any boundary of the finite element model which was not 
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assigned a voltage automatically became a flux line. This is 
known as a natural boundary condition (Sylvester and 
Ferrari, 1990). 

ANALYSIS OF A SYSTEM WITH KNOWN 

CAPACITANCE 
Finite element analysis is a well-established procedure, 

and equations 8-25 demonstrate that the analysis of a 
problem after conformal mapping is mathematically 
identical to the analysis of the original problem. This 
technique therefore does not require an extensive 
validation. However, in order to rule out errors in the 
mathematical analysis and programming mistakes that 
might produce incorrect answers, the finite element 

Figure 4–Coaxial cable transformed by conformal mapping, with 

mesh. 

program and the conformal mapping were used to 
determine the known capacitance of a hypothetical length 
of coaxial cable before being used for the dielectric 
constant probe. This transformation complicated the field 
geometry of the cable rather than simplifying it. It would 
not have been used if the object had actually been to 
analyze the cable. To avoid end effects, the length of cable 
analyzed was considered to be part of an infinitely long 
cable. The capacitance of such a length of cable with air as 
the dielectric is (Ramo et al., 1967): 

C = 2π·L·ε0·ε/ln(rb/ra) (37) 

where 
C = the capacitance = 30.09094 pF 
ra = radius of the center conductor = 25.4 mm (1 in.) 
rb = the inner radius of the shield, rb/ra = 2.30230 
L = the length of the cable = 0.4510523 m (17.758 in.) 
ε = the dielectric constant of the insulation = 1.0 

The same conformal mapping used for the probe was 
applied to the cable, with r1 = ra and r2 = rb. Thus at y = 0, 
the outer surface of the center conductor and the inner 
surface of the shield passed through the critical points at 
x = ±π/2. The cable length L was selected by letting y vary 
from 0 to 4 along the two conductors, producing z values 
of 0 to 0.451 052 3 m. Figure 4 shows the transformed 
cable with a mesh superimposed. Solutions were obtained 
for progressively finer meshes, giving the capacitance 
values shown in table 1. The values converged to the 
theoretical value, with an error approximately proportional 
to the fourth power of the element size. This is the rate of 
convergence predicted by theory if discretization error 
dominates (Sylvester and Ferrari, 1990). 

Table 1. Errors in the capacitance of a coaxial cable with an 

air dielectric calculated by finite element analysis 

Relative Element Size Capacitance (pF) Error (pF) 

1 30.44243 0.35146 
1/2 
1/4 
1/8 
Theoretical value 

30.11791 
30.09286 
30.09100 
30.09094 

0.02694 
0.00189 
0.00006 

As a further check, the problem was complicated by 
considering the cable to be filled with a two-layer dielectric 
consisting of fatty tissue with a dielectric constant ε1 = 8 – 
9.1·j for r > rc and lean tissue with a dielectric constant ε2 = 
66 – 120·j for r < rc. This case is equivalent to two coaxial 
capacitors in series: 

C = 2π·L·ε0/[(1/ε1)·ln(rb/rc) + (1/ε2)·ln(rc/ra)] (38) 

Substituting the values of the variables gives C = 
518.37079 – j·620.96684. Table 2 shows the results of the 
finite element analysis with progressively finer meshes. 
Again, the capacitance from the finite element analysis 
approached the theoretical value with an error proportional 
to the fourth power of element size. 

Figure 5–Transformed probe with finite element mesh. 
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Table 2. Errors in the calculated capacitance of a hypothetical coaxial 

cable filled with layers of conductive dielectric 

representing lean and fat tissue 

Relative Element Size Capacitance (pF) Error (pF) 

1 521.86654 – 624.88680j 3.49575 – 3.91996j 
1/2 518.64852 – 621.27890j 0.27774 – 0.31207j 
1/4 518.39034 – 620.98871j 0.01955 – 0.02188j 
1/8 518.37209 – 620.96829j 0.00130 – 0.00145j 
Theoretical value 518.37079 – 620.96684j 

RESULTS 
After the model was checked against a length of coaxial 

cable, the dielectric constant probe of figure 1 was analyzed. 
The probe was assumed to be covered by a layer of material 
1.587 mm (1/16 in.) thick with a dielectric constant ε1, 
backed by a semi-infinite thickness of a second material with 
dielectric constant ε2. The center conductor radius (r1) was 
17.272 mm (0.68 in.), and the inner radius of the ground 
plane (r2) was 19.05 mm (0.75 in.). Figure 5 shows the 
transformed probe with a mesh superimposed. The elements 
in the second material are drawn with dotted lines. 

Finite element analyses were performed repeatedly with 
different values of ε1 and ε2. For each combination, 
solutions were obtained with progressively finer meshes to 
obtain an error estimate. Table 3 gives the statistics for the 
meshes used. The fourth mesh in the series (1723 unknown 
node voltages) was the finest mesh used on all but one 
analysis. In the case where plastic was backed by lean, the 
result obtained with the coarsest mesh did not fall on the 
trend of the results obtained with the finer meshes, so a 
fifth mesh was included to verify that the results were 
indeed converging. The capacitance obtained with each 
mesh was plotted against the relative size of the elements 
raised to the power (2, 3, or 4) that made the plot linear. 
Then the difference between the capacitance obtained from 
the finest mesh and the capacitance obtained by 
extrapolating the plot to zero element size was added to the 
estimated field truncation error to yield the error estimate. 
Table 4 lists the probe capacitances obtained with the finest 
mesh. Figure 6 shows the variation in calculated 
capacitance with element size for a probe covered by a 
layer of fatty tissue (ε1 = 8 – 9.1j) backed by lean (ε2 = 
66 – 120j). The values converge with an error proportional 
to the fourth power of element size, indicating that 
discretization error dominates. Figure 7 shows the variation 
in calculated capacitance with element size for a probe 
covered with a sheet of plastic (ε1 = 2.5) backed by lean. 
Except for the coarsest mesh, the error in the imaginary 
part of C is approximately proportional to the fourth power 
of the element size, but the error in the real part is 
proportional to the square. 

Table 3. Details of meshes used in the finite element analyses 

of the dielectric constant probe 

Relative Number of Number of Number of 
Element Unknown Node Known Node 

Size Voltages Voltages Elements 

1 109 22 46 
1/2 433 42 184 
1/3 971 62 414 
1/4 1723 82 736 
1/5 

(one analysis only) 2689 102 1150 

Table 4. Results of finite element analysis of the dielectric 

constant probe applied to different materials 

Estimated 
Relative Thickness 

ε1 ε2 Capacitance (pF) Error (%) Function [F(t)] 

1 1 1.2447 0.015 
66-120j 1 34.2524-60.5995j 0.011 0.4231 + 0.0006j 
8-9.1j 1 4.9503-4.6105j 0.011 0.4279 + 0.0055j 
2.6 1 2.0950 0.013 0.4816 
66-120j 8-9.1j 40.5115-68.8522j 0.011 0.4305 + 0.0016j 
8-9.1j 66-120j 27.4491-35.9672j 0.012 0.5958-0.0079j 
2.5 66-120j 12.9291-1.4541j 0.011 0.6269-0.0155j 

Figure 6–Variation of predicted capacitance with element size, fat 

backed by lean. 

These results were used to evaluate a formula developed 
previously for the capacitance of a probe applied to a two-
layer sample (Buck and Groff, 1995): 

1 – F t ·R12C = C a·ε1  · (39)
1 + F t ·R12 

where 
t = the thickness of the top dielectric 
Ca = the capacitance of the probe in air 
R12 = the electrostatic reflection coefficient = (ε1 – ε2)/ 

(ε1 + ε2) 
F(t) = a function of thickness which is 1 at t = 0 and 0 

for t = ∞ 

Figure 7–Variation of predicted capacitance with element size, plastic 

backed by lean. 
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The thickness function F(t) is ideally real and independent 
of ε1 and ε2. Solving equation 39 for F(t) gives: 

F t  = C a·ε 1 – C 1 (40)
C a·ε 1 + C R 12 

The values obtained for F(t) using various values of ε1 and 
ε2 and their corresponding capacitances are shown in 
table 4. The F(t) values vary about the mean by about 
±10% and have small imaginary parts which are within 
1.3% of the real parts. F(t) is approximately a linear 
function of the electrostatic reflection coefficient R12. The 
regression equation: 

F(t) = (0.5205 – 0.0050j) – (0.1012 – 0.0036j)·R12 (41) 

fits the data in table 4 to within 1.7%. 

DISCUSSION AND CONCLUSIONS 
An axisymmetric finite element problem can be 

modified by conformal mapping, and in some cases the 
mapping may greatly simplify the problem. If such a 
transformation is performed, the radius coordinate r in the 
integral which yields stiffness must be replaced by its 
expression in terms of the new coordinates. The particular 
mapping studied was integrable by a power series when the 
elements had straight sides. Curved sides required a 
numerical integration procedure which was more difficult, 
but not excessively so. 

The capacitance of the front surface of an axisymmetric 
dielectric constant probe was determined with an estimated 
error of 0.015% or less by a combination of finite element 
analysis and a conformal mapping which eliminated the 
field singularities at the edges of the conducting plates. The 
conformal mapping also scaled the space around the probe 
logarithmically, expanding the region with the greatest field 
strength and allowing a small number of elements to model 
the space far from the probe. With the problem thus 
simplified, it was successfully analyzed by a finite element 
program and a simple semi-automatic mesh generator 
running on a desktop computer. In order to accommodate 
conformal mapping, the finite element program called user-
written subroutines to evaluate the stiffness integrals for the 
two types of elements: parallelogram elements with straight 
sides and triangular elements with one curved side. If a 
different conformal mapping is used, these subroutines 
must be re-written. 

An empirical formula (eq. 39) for the capacitance of a 
probe applied to a two-layer sample (Buck and Groff, 
1995) includes a function of the thickness of the top layer 
which had been assumed to be real and independent of the 
dielectric constants of the two materials. The finite element 
analyses showed that this thickness function does have an 
imaginary part, but that it is small enough (1.3%) to be 

neglected in most measurements. The thickness function 
also showed a dependence on the dielectric constants of the 
materials involved which was too large to ignore (±10%). 
However, for the single thickness studied, the thickness 
function was well approximated by a linear function of the 
electrostatic reflection coefficient (ε1 – ε2)/(ε1 + ε2). 

At the time this analysis was performed, the 
simplifications achieved with conformal mapping made the 
analysis possible with the tools that were available. It may 
also be advantageous to simplify an axisymmetric problem 
with conformal mapping even when the tools are available 
to perform the analysis without it. A comparison of the 
computational resources required and the results obtained 
with and without conformal mapping could be a productive 
area for future research. 
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