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Abstract. Generated weather that represents alternative realizations of a particular historical record 
is often needed for computer simulation of agricultural or agronomic impacts.  The stochastic 
component of generated weather is based on random numbers.  This study shows that relatively 
short sequences of uniform random numbers, as used to generate daily precipitation, may not 
display sufficient uniformity to reproduce the distribution of the target historical precipitation record or 
of a seasonal precipitation forecast.  The magnitude of the discrepancy becomes an issue in 
applications that require accurate replication of the historical record or forecast.  A procedure is 
proposed to test sequences of uniform random numbers before their use and retain only those 
sequences that display a high degree of uniformity as required by the weather generation model.  
Generated precipitation with and without testing for uniformity of random numbers shows that the 
discrepancy between the two can be important particularly for simulation duration less than 50 years, 
as are often involved in practical water resources and agricultural applications.  The use of “tested” 
random numbers leads to transition probabilities and a precipitation distribution that are generally 
closer in agreement with those of the historical record.  The effectiveness of the method is illustrated 
by comparing generated daily precipitation based on "tested" and "non-tested" random number for 
the Kingfisher, OK, historical precipitation record.   The increased representativeness of the 
generated precipitation using “tested” random numbers allows for shorter simulation duration of 
agricultural models and greater capability to simulate subtle changes in precipitation such as those 
associated with seasonal precipitation forecasts. 
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Introduction 
 
Stochastically generated daily weather is often used to drive environmental and agricultural 
models to simulate erosion, chemical transport, productivity, or management issues. (e. g. 
Mavromatis and Hansen, 2001; Katz, 1996; Mearns et al., 1996; Wilks, 1992; Woo, 1992; 
Richardson, 1985; Williams et al., 1984; Richardson, 1981).   Generated weather is needed to 
supplement existing weather data, provide alternative weather realizations for a particular 
historical record, or identify possible weather sequences for a seasonal climate forecast.  
Previous studies have generally focused on model development and validation of weather 
generators (e. g. Wilks, 1999; Wilks and Wilby, 1999; Semenov et al., 1998; Johnson et al., 
1996; Wallis, 1993; Richardson, 1982).  Here practical consideration is given to situations where 
it is essential that the generated daily precipitation reproduce closely the distribution or 
summary statistics of a historical record or a seasonal forecast.    
One generally expects and assumes that generated weather accurately reproduce the summary 
statistics that are used to drive the weather generator.  Yet recalculation of mean transitional 
probabilities and mean daily precipitation from the generated daily precipitation shows that this 
is not always the case due to the stochastic nature of generated weather. The average size of 
the discrepancy depends largely on the length of the generated weather sequence.  The longer 
the generated weather sequence, the closer its summary statistics to the expected values. The 
typical length of generated weather sequences for agricultural analyses is between 30 and 50 
years.  For such short lengths the discrepancy in summary statistics of the generated 
precipitation can be of the same order of magnitude as departures associated with a typical 
seasonal precipitation forecast.  Hence, discrepancies related to the stochastic nature of 
generated precipitation may overshadow the intended simulation of a systematic difference 
associated with a particular seasonal precipitation forecast.  Theoretically, this can be overcome 
by simply increasing the length of the sequence of generated precipitation to several hundreds 
of years.  However, considerations related to subsequent use of the generated weather in 
complex and resource intensive agricultural simulation models suggest that sequences of about 
50 years are more prevalent in practice.  Hence, a procedure for generating daily precipitation 
sequences that consistently and more closely reproduce the underlying summary statistics 
within about 50 years of generated weather is needed to address such special applications. 
In this study, a procedure is proposed to generate 50-year to 100-year long sequences of daily 
precipitation that closely approximate target summary statistics representing either a historical 
record or a seasonal climate forecast.  Specifically, fundamental assumptions underlying the 
daily precipitation models are reviewed, and properties of uniform random number sequences 
relevant to precipitation generation are discussed.   The proposed adaptation of the precipitation 
model is presented, and the improved capabilities are illustrated by a practical application to the 
historical record from the Kingfisher, OK, weather station.  The proposed procedure calls for a 
strict uniform distribution of the sequence of uniform random numbers used to generate 
precipitation values.  This approach ensures a high level of compatibility between model 
assumptions of a uniform distribution and uniformity of the actual sequence of random number 
that is used.   The increased compatibility between model assumptions and random number 
properties leads to a better replication of specific target statistics by reducing unintended 
random variability.  The use of so called “tested” random numbers in the precipitation generation 
model is particularly useful when a rapid convergence to target summary statistics is desired, 
and for practical environmental and agricultural model applications that simulate subtle changes 
in weather characteristics.  
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Stochastic Generation of Daily Precipitation 
 
Model Description 
Weather generation computer programs, such as CLIGEN1 (Nicks and Gander, 1994), WGEN1 
(Richardson and Wright, 1984), US CLIMATE1 (Hanson et al., 1994) and GEM1 (Johnson et al., 
2000), often use a chain-dependent stochastic precipitation model to characterize daily 
precipitation at a site.  A chain-dependent stochastic precipitation model is also used in this 
investigation.  Daily precipitation is modeled in two sequential parts: first, the occurrence of a 
rainy day, and second, the amount of precipitation on a rainy day (Waymire and Gupta, 1981).  
The occurrence of rainy days is determined by a two-state, first-order Markov chain.  The 
Markov chain is said to be two-state because it only considers whether precipitation does or 
does not occur on a specific day, and it is first-order because the probability of precipitation on a 
rainy day is conditioned only on the precipitation state of the previous day (Haan et al., 1976).  
The probabilities of precipitation given the previous day’s precipitation state are called transition 
probabilities.  The transition probabilities considered here are the probability of a wet day after a 
dry day (PWD), and of a wet day after a wet day (PWW).   The nonstationarity of transition 
probabilities within a year due to seasons is introduced by using separate transition probability 
values for each calendar month (Wilks, 1989). The precipitation amount on a rainy day is 
specified by a probability distribution function (or cumulative distribution function) of daily 
precipitation amounts.  In this investigation a double exponential distribution is used.  As before, 
seasonality is introduced by using different distribution parameters for each calendar month.  
Both the transition probabilities and distribution parameters are derived from available historical 
data. Further information on the fundamentals of chain-dependent stochastic precipitation 
models can be found in Parlange and Katz (2000), Johnson et al. (1996), Hanson et al. (1994), 
and Woolhiser and Roldan (1982). 
 
Stochastic Precipitation generation process 
Occurrence of a rainy day is determined by comparing a random number generated from a 
uniform distribution between 0 and 1 to the value of the transition probabilities PWD or PWW.  If 
the preceding day is dry and the random number is smaller than PWD, then the current day is a 
rainy day; alternatively, if the random number is greater than PWD, then the current day is dry.  
The decision process is similar if the preceding day is wet.  Once the occurrence of a rainy day 
has been established, the amount of precipitation on that day is determined by generating a 
new random number from a uniform distribution and solving the inverse cumulative distribution 
function for daily precipitation, i.e. the random number is taken as the cumulative frequency 
value and the corresponding daily precipitation is determined analytically or numerically 
(Figure 1).  Strings of consecutive random numbers (called sequences) are generated 
separately for each transition probability, precipitation distribution and calendar month.  For 30- 
or 50-year’s worth of generated precipitation data, anywhere between 50 to 1500 random 
numbers are required per parameter and calendar month.  Generation of separate sequences of 
random numbers for each parameter and month is important, because selectively picking 
random numbers out of a single continuous string for assignment to different parameters and 
time periods may alter the random properties of the resulting sequence of random numbers for 
that parameter and time period.  For example, generation of 30 years of daily precipitation for 
the month of January (assuming, on average, 29 dry days and 2 rainy days) requires a 
sequence of about 900 uniformly distributed random numbers (30 years times 29 dry days) to 
determine the occurrence of rainy days after dry days.  To determine the amount of precipitation 

                                                 
1 Names of precipitation models and random number generators are given for illustration purposes only, and no 
comparison, rating or endorsement is intended. 
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on each of the rainy days requires a separate sequence of 60 uniformly distributed random 
numbers (30 years times 2 rainy days). And to determine the occurrence of rainy days after wet 
days, requires another separate sequence of 60 uniformly distributed random numbers (30 
years times 2 wet days).  In arid climates, the sparsity of rainy days may require that over 50 
years of precipitation be generated to adequately reproduce the historical record.  
 
 

 
 
 
 
Figure 1.  Schematic of the generation of daily precipitation amounts. 
  
Precipitation model assumptions and limitations 
First, precipitation is assumed to be stationary in time.  Thus, systematic annual variations or 
trends are not modeled.  Second, transition probabilities and daily precipitation distributions are 
assumed to be monthly independent.  Thus, non-random persistence effects of monthly 
precipitation (i.e. as a result of El Nino Southern Oscillation or other ocean-atmosphere 
anomalies (Woolhiser et al., 1993)) are not modeled.  Third, random numbers used for 
precipitation generation are assumed to be uniformly distributed between 0 and 1.  Anything 
other than uniformly distributed random numbers will not reproduce or converge to the transition 
probabilities and daily precipitation distribution of the historical data that is being simulated.  
Fourth, daily precipitation is generally modeled by medium-tailed distributions (exponential, 
gamma, mixed-exponential, skewed-normal, etc.).  Thus, one should not expect the model to 
work well for the generation of extreme daily precipitation values which have a heavy-tailed 
distribution (Katz, 2002).  Fifth, monthly transition probabilities and daily precipitation 
distributions are derived unconditionally, i.e. they are not conditioned on wet or dry months.   As 
a result low and high-end monthly precipitation values are not well reproduced (Wilks, 1989).  In 
the context of these assumptions and limitations, the role and effect of random numbers on 
generated daily precipitation is investigated. 
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Random Numbers 
 
Random number generators 
Random numbers generated from three different random number generators are used to 
graphically illustrate typical variations in random number sequences.  The first random number 
generator, RN1, is by MacLaren and Marsaglia (1965) and was used in the original version of 
CLIGEN. The second generator, RN2, is by Press at al. (1992) and includes two generators and 
shuffling to break up any sequential correlations.  And, the third generator, RN3, is a library 
function included in the Salford compiler (Salford, 1998).  
 
Random number patterns 
Thirty thousand (30,000) random numbers were generated with each of the three random 
number generators.  Localized systematic departures of sequences of random numbers from 
the expected mean value are visualized by plotting, for each generator, the cumulative 
departures of the random numbers from the expected mean of 0.5 (Figure 2).  Cumulative 
departures are defined as: 
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Where cd is cumulative departure, n is the ending position in the sequence of random numbers, 
and xi are the uniform random numbers. If sequences of random numbers were uniformly 
distributed between 0 and 1, then the expected value of the cumulative departure should be 
zero and the curve of cumulative departures should randomly fluctuates about the zero line. 
However, local steep and sustained positive and negative variations in the plotted data 
(indicated by A in Fig. 2) are observed.  Such variations are indicative of sequences of random 
numbers that display, over the length of the sequence (up to 1000 values), systematic 
departures from the mean of the uniform distribution.  Steeper variations are indicative of larger 
departures.  The departures are most likely due to inherent properties of sequences of random 
number (random clustering effects).  The observed departures of short sequences of random 
numbers within the overall set of random numbers do not imply that the random numbers are 
not random.  It merely points to the fact that short sequences of random numbers may not 
closely adhere to the uniform distribution due to the stochastic nature of random numbers.  
Hence, while the generated random numbers display correct random properties, short 
sequences of random numbers may depart from the expectation of a uniform distribution. Thus, 
if such a sequence of random numbers were to be used for precipitation generation, then the 
generated precipitation may not be representative of the intended historical data. For example, 
in Figure 1, if the distribution of the random numbers were not uniform but trapezoidal with more 
values in the lower portion, then a larger number of smaller daily precipitation values would be 
generated. The practical implications of non-uniformly distributed random numbers are 
illustrated in the example application section.  
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Fig. 2.  Cumulative departures of 30,000 random numbers generated by three different random 
number generators (RN1, RN2, RN3).  Symbol A shows locations where the sequence of 
random numbers is not likely uniformly distributed, and symbol B shows locations where it is 
likely uniformly distributed. 
 
Deviation of random numbers from expected values 
For each curve in Figure 2, the mean of non-overlapping sequences of 50, 100 and 200 random 
numbers is calculated.  The length of sequences corresponds approximately to the minimum 
number required for 30- to 50-year’s worth of precipitation generation for a particular parameter 
and calendar month.   The mean deviation, standard deviation and maximum deviation are used 
as measures of departure and are expressed in percent of the expected mean (0.5).  Deviation 
refers to the absolute difference between the mean of a generated sequence of random 
numbers and the expected mean of 0.5. The results are summarized in Table 1.  The magnitude 
of the deviations is similar for the three generators.  The values in Table 1 are in line with what 
one would expect based on random sampling from a uniform distribution.  For example, the 
standard deviation of the mean (in percent of mean) for sequences of 50, 100 and 200 
generated random numbers is 8.3%, 5.8% and 3.9%, respectively, which is close to the 
theoretically expected values of 8.16%, 5.77% and 4.08%, respectively. The average of the 
mean deviation (last column in Table 1) for non-overlapping sequences of 100 random numbers 
is 4.6%, the average standard deviation is 5.8%, and the average maximum deviation is 18.0%.  
The same statistics for sequences of 50 random numbers (first three rows in Table 1) and 200 
random numbers (last three rows in Table 1) show that quadrupling the sequence length from 
50 to 200 random numbers reduces the average deviation by only about half, which is what one 
should expect with increasing sample size.  
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Table 1.  Deviations of the mean of non-overlapping sequences of 50, 100 and 200 random 
numbers from the expected value of 0.5.  

 
       Generator name 
 

 
RN1 

 
RN2 

 
RN3 

 
Average 

600 sequences of 50  
random numbers 

    

       Mean deviation 6.5% 6.9% 6.5% 6.6% 
       Standard deviation 8.0% 8.6% 8.2% 8.3% 
       Maximum deviation 24.5% 32.7% 27.7% 28.3% 
300 sequences of 100 
random numbers 

    

       Mean deviation  4.8% 4.6% 4.4% 4.6% 
       Standard deviation 6.1% 5.8% 5.5% 5.8% 
       Maximum deviation 20.2% 18.7% 15.2% 18.0% 
150 sequences of 200 
random numbers 

    

       Mean deviation  2.9% 3.2% 3.3% 3.1% 
       Standard deviation 3.5% 4.0% 4.3% 3.9% 
       Maximum deviation 9.9% 11.5% 15.3% 12.2% 

 
Given the pattern of localized systematic departures (Figure 2), the size of the deviations (Table 
1), and the requirement that random numbers conform to the uniform distribution (precipitation 
model), one could be inclined to test sequences of random numbers for conformity to the 
uniform distribution and only use those sequences that pass that test.  Such an approach has 
been proposed by Niederreiter(1978) who argued that statistical randomness may not be the 
only desirable property, and that other properties of generated random numbers, such as 
“evenness” of the distribution of random points, may also be important in some applications.  
This is believed to be the case here where the generated precipitation can only reproduce the 
desired historical precipitation distribution if the random numbers are truly uniformly distributed 
over the range of 0 and 1.  The notion of making certain properties of a sequence of random 
numbers dependent on the intended use has also been suggested in Law and Kelton (2000).  
 
Random number testing 
Law and Kelton (2000) proposed to use a Chi-Square "goodness-of-fit" test, with all parameters 
known, to check whether a sequence of random numbers is uniformly distributed between 0 and 
1.  In this study the authors tested sequences of 100 random numbers as they are generated.  
The value of 100 random numbers was a compromise between the low-end value for the 
generation of 30 to 50 years’ worth of precipitation and the need for large samples to conduct a 
meaningful Chi-Square test.  Traditionally, one would reject random numbers that fail the test 
with an α value of 0.1 or 0.05, meaning that only random numbers that have a truly uneven 
distribution are rejected.  Here, however, we want to retain random numbers that are very 
evenly distributed, and, therefore, the test is conducted with an α value of 0.95.  In addition to 
uniformity of the distribution, the mean of the random numbers is also tested to be within 0.5% 
or less of the expected mean of 0.5.  Hence, sequences of 100 random numbers that pass 
these tests can be expected to approximate the uniform distribution very closely.  These 
sequences of random numbers are referred to as “tested” random numbers because they are 
made to conform to the uniformity assumption of the precipitation model.  In the practical 
implementation of this test, a suitable sequence of random numbers cannot always be found 
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within a desired number of tries.  In these instances the Chi-Square test criteria are relaxed, i. e. 
α is incrementally reduced (0.94, 0.93, 0.92, 0.91 and 0.90), and the mean is incrementally 
increased (1.0, 1.5 and 2%), until a pool of random numbers that passes the test is found. 
Thirty thousand “tested” random numbers were generated and non-overlapping sequences of 
50, 100 and 200 random numbers were evaluated in an identical manner as the “non-tested” 
random numbers in the previous section.  Results are shown in Table 2.  Mean deviation, 
standard deviation and maximum deviation are all smaller than corresponding values for the 
three random number generators presented in the previous section (Table 1).  For sequences of 
50 random numbers, corresponding values decreased by about 30%, whereas for sequences of 
100 and 200 random numbers values decreased by a factor of about 10 or larger.  Sequences 
of 100 and 200 random numbers fared much better because the testing for uniformity was 
conducted on pools of 100 random numbers. Overall, “tested” random numbers adhere much 
closer to the assumption of uniform distribution than “non-tested” random numbers. Similar high 
levels of improvements could have been achieved for the sequence of 50 random numbers if 
the testing were conducted on pools of 50 random numbers.  The underlying assumption here is 
that any practical application of the weather generator will use at least 100 random numbers per 
variable and month, and testing can be conducted on pools of 100 random numbers. 
 
Table 2.  Deviations of the mean for non-overlapping sequences of 50, 100 and 200 “tested” 
random numbers, expressed in percent of the expected value of 0.5.  

 600 sequences of 
50 random numbers 

300 sequences of 100 
random numbers 

150 sequences of 
200 random numbers 

Mean deviation 4.8% 0.4% 0.3% 
Standard deviation 6.0% 0.5% 0.4% 
Maximum deviation  18.8% 1.4% 0.9% 

 
Impact on generated precipitation 
 
The daily precipitation data of the National Weather Service station at Kingfisher, OK is used as 
baseline to illustrate the impact of “tested” versus “non-tested” random numbers on the 
generated daily precipitation.  The impact is defined in terms of deviation of generated daily 
precipitation statistics from baseline values of the historical precipitation data, expressed in 
percentage of the historical values.  Deviations are calculated by month for the transition 
probabilities PWD and PWW and for the mean, standard deviation and skew coefficient of the 
daily precipitation. The impact of “tested” versus “non-tested” random numbers on generated 
precipitation is evaluated for ten separate precipitation generation runs of 50 years each.  Ten 
separate generation runs are made, each with different random numbers.  The different random 
numbers result in slightly different generated precipitation values.   The random number 
generator used for this assessment is RN3.  This random number generator was selected 
because it is the most detailed of the three used in this study. 
 
Transition probabilities 
Transition probabilities PWD and PWW are calculated for the ten generated precipitation data 
sets, and average monthly deviations from the historical baseline are reported in Table 3 for the 
case of “non-tested” and “tested” random numbers.  For all months the deviation of transition 
probabilities from baseline is smaller for “tested” random numbers.  The largest average 
deviation in PWD produced by “non-tested” random numbers is 6.5% (Jan), whereas it is 3.9% 
(Dec) for “tested” random numbers.  Similarly, for PWW, the values are 11.3% and 6.6%, 
respectively.  On average over all months (last column in Table 3), the deviations for PWD and 
PWW are reduced by a factor of two when using "tested" versus “non-tested” random numbers.  
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Table 3.  Deviations of transition probabilities PWD (rainy day after dry day) and PWW (rainy 
day after rainy day) from historical baseline data in percent of baseline value. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Av.
PWD              
Non-tested 6.5 5.5 5.8 6.0 3.5 4.9 5.8 4.6 4.3 5.1 6.1 5.5 5.3 
Tested 3.4 3.0 3.5 2.3 2.7 2.4 3.8 3.3 2.2 2.1 3.7 3.9 3.0 
PWW              
Non-tested 11.3 8.2 7.8 4.1 5.3 4.1 6.7 4.4 6.8 7.1 9.6 8.5 7.0 
Tested 6.6 2.6 4.1 2.6 1.3 2.7 4.6 2.9 2.6 1.9 1.6 5.2 3.2 

 
Daily precipitation distribution 
The deviations in mean, standard deviation and skew coefficient of the generated daily 
precipitation are presented in Table 4 for each month and as an average over the year.  
Deviations in the mean (first two rows) appear to be systematically smaller for “tested” than for 
“non-tested” random numbers.  The annual deviation (last column in Table 4) shows that the 
average reduction is about a factor of two.  However, for this application, the reduction does not 
extend to the standard deviation and skew coefficient which have similar deviations for “tested” 
and “non-tested” random numbers.  This may be related to the fact that the double exponential 
distribution, which underlies the generation of daily precipitation amount, is not centered around 
the mean, and standard deviation and skew of the generated data are sensitive to variations in 
mean.  
 
Table 4.  Deviations of the mean, standard deviation and skew coefficient of generated daily 
precipitation from historical baseline data in percent of baseline value. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Av. 
Mean              
Non-tested 7.2 5.7 5.7 7.2 4.8 3.6 6.3 6.1 6.2 6.7 8.3 6.0 6.2 
Tested 3.4 6.1 2.5 1.3 2.1 2.8 2.6 3.7 2.3 2.9 4.0 2.6 3.0 
St. Dev.              
Non-tested 9.5 8.1 11.2 8.5 5.4 3.2 4.9 8.6 7.2 11.8 8.9 8.1 7.9 
Tested 7.2 18.7 7.7 2.9 3.9 5.4 7.8 9.0 7.4 5.4 7.1 6.9 7.4 
Skew Coef.              
Non-tested 28.8 21.5 29.6 11.3 10.2 7.9 16.5 17.4 14.9 18.3 23.4 15.2 17.9
Tested 20.0 24.9 25.6 14.1 11.8 11.1 27.1 15.9 19.0 17.2 24.0 17.7 19.0

 
The distributions of generated daily precipitation for the month of April for each of the ten 
generation runs are plotted in Figure 3.  Each distribution of generated daily precipitation 
attempts to reproduce the fitted three-parameter, double-exponential distribution of the historical 
data at Kingfisher, OK (thick line in Figure 3). The distributions resulting from “non-tested” 
random numbers (Figure 3 top) show a much greater spread than those resulting from “tested” 
random numbers (Figure 3 bottom).  At the median, the range of the probability of exceedance 
curves of daily precipitation is 0.9 mm for the "tested" random numbers, down from 2.5 mm for 
"non-tested" random numbers. The greater spread associated with "non-tested" random 
numbers is attributed to the sustained departures of sequences of random numbers from the 
uniform distribution as shown in Figure 2.  The results show that daily precipitation values that 
have been generated with “tested” random numbers approximate the fitted distribution of the 
historical data at Kingfisher better and more consistently.  
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Figure 3.  Distributions of generated daily precipitation based on  “non-tested” (top) and “tested” 
(bottom) random numbers.  The thick line at the center of the generated distributions represents 
the fitted distribution of the historical data at Kingfisher weather station, Oklahoma.  
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Discussion 
 
Mean monthly precipitation derived from daily precipitation generated based on “tested” random 
numbers is well reproduced, yet the variability of the derived monthly precipitation is often 
underestimated.  A similar underestimation of variability was also reported for the case where 
”non-tested” random numbers are used in the model (Johnson et al., 1996; Wilks, 1989).  A 
fundamental reason for this underestimation of monthly variability lies in the simplifying 
assumptions of the precipitation model, and not so much in the quality and properties of the 
random numbers.  The model assumes constant monthly transition probabilities and daily 
precipitation distributions.  In reality, occurrence of rainy days and amount of daily precipitation 
change when a particular month is either dry or wet (Wilks, 1989).  Wilks showed that daily 
precipitation generation conditioned on dry/wet state of a month will reproduce the high and low 
end of monthly precipitation.  Based on the similarity in the average departure of the standard 
deviation (Table 4) between daily precipitation generated from “non-tested” and “tested” random 
numbers, it is believed that the use of “tested” random numbers for precipitation generation 
does not contribute much to degrading the variability of monthly precipitation beyond that 
already inherent to model simplifications. 
 
Similar considerations apply for variations in annual precipitation which often are a function of 
persistence of wet or dry months.  The daily precipitation model assumes independence 
between monthly precipitation statistics and, thus, allows only simulation of random, 
probabilistic clustering of wet or dry months (Johnson et al., 1996).  This limits the model’s 
ability to simulate systematic, long term wet/dry persistence, such as those brought about by an 
El Nino or other low frequency ocean-atmosphere interactions (Woolhiser, et al., 1993).  Here 
again, the underestimation of annual precipitation variability is induced by model simplifications, 
and should not be attributed to the use of “tested” random number in the precipitation 
generation process. 
 
One may also be inclined to think that additional variability associated with “non-tested” random 
number sequences may provide a basis for generating more accurately extreme daily 
precipitation events of 100 to 200 year length.  Such a thought should be viewed with great 
skepticism.  First, there are no reasons to believe that “non-tested” random numbers should 
occur more frequently at the edge of the distribution (near 0.0 or 1.0) than “tested” random 
numbers.  A test of 100,000 random numbers showed that both “non-tested” and “tested” 
approach produced about the same number of values above a threshold of 0.999, with highest 
value in either approach near 0.99999.  Second, generally accepted distributions of daily 
precipitation (exponential, gamma, mixed-exponential, skewed-normal, etc.) are medium-tailed 
distributions and less suitable for accurate representation of extreme values which generally 
have a heavy-tailed distribution. And, third, the focus and intent of the proposed approach is to 
produce repeat sequences that approximate the intended summary statistics well, not to 
generate more accurate extreme events.  Given these considerations the use of “tested” 
random numbers does not negatively impact the generation of extreme events. 
 
The best demonstration that model-generated daily precipitation based on “tested” random 
number sequences do approximate the fitted distribution of the historical record or a seasonal 
precipitation forecast (target statistics) more consistently is illustrated in Figure 3.  The use of  
“tested” random numbers leads to distributions of generated daily precipitation that are more 
consistent with one another and with the target distribution.  Thus, the proposed approach fulfills 
the objective of reproducing accurately a desired target distribution within constraints of 
commonly used simulation durations for agricultural applications. 
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Conclusions 
 
This study recognized that short sequences of uniform random numbers, while being acceptably 
uniform in the terms of random sampling statistics, do not always meet uniformity expectations 
for daily precipitation generation that aim at consistently reproducing the summary statistics of a 
historical record or a seasonal precipitation forecast.  For such purpose, the model for daily 
precipitation generation must be driven by random numbers that are uniformly distributed 
between 0 and 1.   Yet, short sequences of random numbers are not necessarily uniformly 
distributed, and discrepancies may arise between expected and actual properties of random 
numbers provided to the precipitation generation model.  This is not new and has been well 
formulated by Neiderreiter (1978): “… instead of trying to cope with the impalpable concept of 
randomness, one should select [random] points according to a deterministic scheme that is well 
suited for the problem at hand”.  In this study, a deterministic testing procedure has been 
proposed to screen short sequences of random number to meet the requirements of the 
precipitation generation model, i. e. random numbers uniformly distributed between 0 and 1.  
The following conclusions can be drawn from this investigation: 
 
- The use of “tested” versus “non-tested” random numbers in stochastic generation of daily 
precipitation does make a difference in the characteristics of generated daily precipitation data 
and can be a factor when close reproducibility of a target distribution is an issue. 
 
- Daily precipitation generated with “tested” random numbers consistently produce transition 
probabilities and a mean of daily precipitation that better approximate the historical record or a 
seasonal precipitation forecast, and promoted a faster convergence to the target summary 
statistics. 
 
- The improvements achieved by use of “tested” sequences of random numbers enhance the 
usefulness of generated precipitation in practical simulation applications that need to identify 
agronomic impacts of a particular climate or forecast departure within constraints of realistic 
simulation durations. 
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Nomenclature 
α = significance level of the Chi-Square test 
Cd = cumulative departure 
i = counter 
n  = upper count limit for cd calculation 
PWD = Probability of rainy day after dry day 
PWW = Probability of rainy day after rainy day 
RN1 = random number generator by MacLaren and Marsaglia (1965) 
RN2 = random number generator by Press at al. (1992) 
RN3 = random number generator of Salford compiler (Salford, 1998) 
x      = random number 
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