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Opportunisticmanagement for rangelands not at equilibrium

MARK WESTORY, BRIAN WALKER, AND IMANUEL NOY-MEIR
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Structure of talk

Review 6 concepts in “resilience theory” that we feel are
especially relevant to the production of state-and-transition
models for rangelands.

How the concept improves models and management

Provide examples from rangelands.



Concept 1: Resilience

Engineering resilience: how quickly a system returns to equilibrium
(e.g., within a state)

Ecological resilience: capacity of a system to absorb a disturbance
without fundamental changes to its characteristic processes
and feedbacks (i.e., to a new equilibrium, a new state)

Importance: distinguishes two key aspects (and approaches)
for state-and-transition models



Concept 1: Resilience

a. Rates of change/recovery for community types in southern plains grassland
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Concept 1: Resilience

Ecological resilience varies spatially at several scales

Grass dynamics in 123
trend plots: ca. 1970-2003
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Concept 2: Thresholds or tipping-points

Mechanisms by which resilience is lost and a transition occurs,
usually related to changes in feedback systems.

__________________________________________________

Trigger
Management/ v N N
environmental iReqlgced ¥— ]E:hzrtl)gell(ni , Transition to
conditions resiience eedbacks: a new state

Importance: provides an operational concept for anticipating
and mitigating the persistent loss of desired services



Concept 2: Thresholds or tipping-points

Increasing bare ground connectivity is a key measurement in arid rangelands

Pre-threshold state, Pre-threshold state, Post-threshold state
resilient condition reduced resilience



Concept 2: Thresholds or tipping-points

Threshold decomposition: there are distinct stages of development
of a threshold

Historic black grama
grassland

Pattern/structure (vulnerability) — |ndicators of
c T (e.g., bare ground connectivity) management needs
Tresmun opseed l
grassland
T2 Process (feedback)

(e.g., erosion rate)

Mesquite coppice

shrubland Degradation (irreversibility)— Indicators of

(e.g., topsoil depth and restorability
water-holding capacity)



Concept 3: Functional vs. response diversity

Functional diversity: variety of organisms that support distinct
ecosystem functions

Response diversity: variety of responses to environmental
change among species that contribute to the same ecosystem
function (i.e., redundancy).

Importance: High response diversity promotes resilience,
systems that exhibit low redundancy and vulnerable
species have inherently low resilience.



Concept 3: Functional vs. response diversity
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Concept 3: Functional vs. response diversity

Once black grama grass is gone, dropseed grass cannot stabilize soil in drought



Concept 4: Slow vs. fast variables

Slow variables: factors that change slowly in response long-term
processes and that constrain responses of fast variables.

Fast variables: factors that change rapidly and that are most easily
measured by managers

Importance: Slow variables determine the resilience of an
ecosystem
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Concept 4. Slow vs. fast variables
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Fast variable: Grass cover
» Often the focal variable for managers

« Difficult to ascertain loss of resilience
due to high variability

Fuhlendorf et al., 2001
Applied Vegetation Science 4: 177



Concept 4: Slow vs. fast variables

Slow variable: Fill-in and growth of trees to fire-resistant condition

2002



Concept 4: Slow vs. fast variables

Slow variable: Gradual soil deflation and reduced WHC in juniper savanna

Measurement of slow variables often requires techniques that differ from
those used to measure fast variables



Concept 5: Cross-scale interactions

Processes at one scale interact with those at other scales to
determine thresholds

Importance: Observations at multiple scales are needed to

Interpret rangeland change. The scale driving rangeland
dynamics may change over time

We often ignore the landscape context of our observations



Concept 5: Cross-scale interactions

Grazing exclosure--1950

1961

Broad-scale drivers overwhelm local management interventions



Concept 5: Cross-scale interactions
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Concept 6: Social-ecological systems

The feedback between human decision-making and ecological
processes ultimately determines ecological resilience

Importance: We need a better understanding of how ranching
livelihoods are linked to environmental conditions to
effectively use state-and-transition models



Concept 6: Social-ecological systems

Sandy (low resilience) allotment

1997
West Part of Original
Allotment Sold to Owner
of East Part

East & West Allotments
1985 R bined
1939 Permittee Filed 1986 ecombine
Allotment Adjudicated 1975 Bankruptcy 1999
Ranch Sold Ranch Sold
79 -1

1939 2001 2007
Ranch Sold
1982 1995
Lease Ruled lllegal Allotment Split into
Portion of Allotment Split Off 2 New Allotments
Ranch Sold East Part of Original

Allotment Sold

Gravelly/Hills (high resilience) allotment

1963
Owners Split Allotment 1984
1939 into 2 Ranches Combined With Another 1998
Allotment Adjudicated Allotment Intergenerational Transfer
Within Owner Family

1955
Ranch Sold

1939 2007

We may need different recommendations/policies for different sites and regions



Conclusions: key themes for state-and-transition
models and research

» Describe how both engineering and ecological resilience varies
among ecological sites.

» Indicators of a) threshold initiation, b) feedbacks, and c) persistent
degradation

» Better characterization of key slow variables in models

» Descriptions of how species biology/community interactions
determine resilience.

» Consider possibility of cross-scale feedbacks and the need for
landscape-scale indicators

» Document human-environment interactions with respect to
ecological sites
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