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ABSTRACT: 
 
Texture measures are commonly used to increase the number of input bands in order to improve classification accuracy, especially 
for panchromatic or true colour imagery. While the use of texture measures in pixel-based analysis has been well documented, this is 
not the case for texture measures calculated in an object-based environment. Because texture calculations are computer intensive, 
fewer variables are preferred and knowledge of correlation and how it changes across segmentation scales is required. The objectives 
of this study were to assess correlations between texture measures as a function of segmentation scale while mapping rangeland 
vegetation structure groups using 5-cm resolution true-color aerial photography. Entropy, mean and correlation were least correlated 
with other texture measures at all scales. The highest correlation that remained stable across all segmentation scales was found for 
contrast and dissimilarity. We observed both increasing and decreasing correlation coefficients for texture pairs as segmentation 
scale increased, and there was larger variability from one scale to the next at finer segmentations and more consistency in correlation 
at medium to coarse scales. This was attributed to the fact that at finer segmentation scales, smaller objects were more numerous, 
and the ratio of edge to interior pixels for an image object was higher than at coarser scales. This approach allowed for determining 
the most suitable and uncorrelated texture measures at the optimal image analysis scale, was less computer intensive than a series of 
test classifications, and shows promise for incorporation into rangeland monitoring protocols with very high resolution imagery.  
 
 

1. INTRODUCTION 

Texture measures are commonly used in remote sensing in an 
attempt to increase classification accuracy and/or compensate 
for a low number of input bands, such as in panchromatic or 
true colour imagery. The additional information that can be 
exploited by using texture can be especially useful with high 
resolution satellite imagery and/or aerial photography (Ryherd 
and Woodcock, 1996; Wulder et al., 1998; Franklin et al., 2000; 
Coburn and Roberts, 2004). While the use of texture measures 
in pixel-based analysis for vegetation classification has been 
well documented (Gong et al., 2003; Tuominen and Pekkarinen, 
2004; Pouliot et al., 2006), this is not the case for texture 
measures calculated in an object-based environment, with few 
exceptions ((Herold et al., 2003; Carleer and Wolff, 2006). 
Even when object-based image analysis (OBIA) is used, texture 
may be calculated in a pixel-based environment, and then 
imported as an additional band for further OBIA (Moskal and 
Franklin, 2002; Ivits et al., 2005). One of the reasons is that 
texture calculations can be very time consuming in OBIA, 
especially if multiple segmentation scales are analyzed and the 
imagery has high to very high resolution.   
 
In OBIA, the analyst is usually faced with two main challenges: 
determination of the optimal segmentation scale, and selection 
of the most suitable features for classification. Due to the 
sensitivity of texture to scale (Ferro and Warner, 2002), an 
optimal segmentation scale is especially important when texture 
features are included. With multiple texture features, it is 
prohibitive to use trial and error, visual analysis, or test 
classifications to assess appropriate texture features or analysis 
scales due to computation times. Knowledge of correlation 
between texture features, and how correlation changes with 

segmentation scale is useful for selection of the least correlated 
texture features.   
 
In this study, we used sub-decimeter resolution aerial 
photography acquired with an unmanned aerial vehicle (UAV), 
using an off-the shelf digital camera due to its light weight. 
Texture added an additional band to the highly correlated red, 
green, and blue (RGB) bands. The imagery was acquired for the 
purpose of mapping rangeland vegetation as part of on ongoing 
research project at the USDA Agricultural Research Service 
(ARS) Jornada Experimental Range in southern New Mexico. 
This research is aimed at determining the utility of UAVs for 
rangeland mapping and monitoring and developing a workflow 
for processing and analyzing UAV imagery in a production 
environment (Rango et al, 2006; Laliberte et al., 2007b).  
 
Texture had proven to be a useful parameter for mapping 
rangeland vegetation, and had improved classification accuracy 
over only using RGB bands in a related study (Laliberte and 
Rango, in review). However, because a decision tree was used 
for feature selection, correlated features can be included and 
may be selected by the decision tree. Other feature selection 
tools, such as Feature Space Optimization in the OBIA software 
Definiens (Definiens, 2006) may also select correlated features. 
In the case of texture, use of unnecessary and correlated 
features can slow down classification times dramatically.  
 
The objectives of this study were to assess correlations between 
texture measures as a function of segmentation scale, using as 
an example the mapping of rangeland vegetation structure 
groups (Bare Ground, Grasses, Shrubs) with 5-cm resolution 
true-colour aerial photography, acquired with an unmanned 
aerial vehicle (UAV).       



 

2. METHODS 

2.1 Study area and Imagery 

The imagery was acquired in October 2006 at the Jornada 
Experimental Range in southern New Mexico over arid 
rangeland with a mixture of shrubs, grasses, and bare soils 
common to the northern part of the Chihuahuan desert. We used 
a small UAV (MLB BAT 3) with a weight of 10 kg and a 
wingspan of 1.8 m, equipped with a Canon SD 550 seven-
megapixel digital camera. Imagery was acquired with 60% 
forward and 30% side lap for photogrammetric processing. 
Eight images were orthorectified and mosaicked into an image 
with a 5 cm ground resolution and covering an area of 490 m x 
188 m.  
 
2.2 Image Processing 

Image analysis was performed using the object-based image 
analysis software Definiens Professional 5 (Definiens, 2006). 
The segmentation approach is a bottom-up region merging 
process based on heterogeneity of image objects, and controlled 
by three segmentation parameters: color/shape, 
compactness/smoothness, and a scale parameter (Benz et al., 
2004). Color/shape and compactness/smoothness were set to 
0.9/0.1 and 0.5/0.5 respectively, using as a guideline previous 
research with UAV imagery in this area (Laliberte et al., 
2007b). We chose 15 segmentation scales (scale parameters) 
from 10 to 80 in increments of 5. At scales coarser than 80, 
individual shrubs were being merged together, therefore 80 
became the cut-off for the coarsest scale.  
 
The classes of interest were Bare Ground, Grass, and Shrub, 
and ground truth data consisted of 300 samples (100 per class) 
of polygons mapped in the field with differentially corrected 
GPS. Half of those samples were set aside for accuracy 
assessment. Classification was performed using a nearest 
neighbour classification, and accuracy was assessed by 
evaluating overall, producers, and users accuracies as well as 
the Kappa Index of Agreement (Congalton, 1991).  
 
The texture measures used in this study were second order 
statistics derived from the grey-level co-occurrence matrix 
(GLCM), and describe changes in grey level values of pixels 
and relationships between pixel pairs in a given pair (Haralick 
et al., 1973). The 10 texture measures were derived after 
segmentation and represent texture features calculated on image 
objects (Table 1). In this software, pixels that border the image 
object directly are taken into account in order to reduce border 
effects (Definiens, 2006). Texture was calculated on RGB 
bands and on the average of all directions, because the 
vegetation classes of interest were not directionally biased.  
 
We used a decision tree (CART®, Salford Systems) to 
determine the optimal texture measures for each segmentation 
scale based on the 150 input samples for the three classes. A 
decision tree is a non-parametric tool, and as such is not 
sensitive to outliers and correlated variables (Breiman et al., 
1984). Decision trees are an excellent data reduction tool, 
especially when many features are available (Chubey et al., 
2006; Laliberte et al., 2007a). However, a decision tree may 
select correlated variables; therefore an additional correlation 
analysis can further reduce data dimensionality. Spearman’s 
rank correlation analysis was used to determine correlations, 
because this approach does not require assumptions of 
normality and linearity (Sokal and Rohlf, 1995). 
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Pi,j is the normalized co-occurrence matrix, N is the number of 
rows or columns, σi and σj are the standard deviation of row i 
and column j, μi and μj are the mean of row i and column j, Vk 
is the normalized grey level difference vector, and k = |i-j| 
 
Table 1. Texture measures used in the analysis.  
 
 

3. RESULTS AND DISCUSSION 

3.1 Texture Features and Scale 

The texture measures chosen by the decision tree at each 
segmentation scale are shown in Table 2. For each scale 
parameter, the order of texture features is displayed based on 
variable importance scores from the decision tree. For example, 
at scale 60, the order of texture features was MENT first, and 
MDIS second. The first variable represents the first splitter in 
the decision tree. As the scale increased, fewer variables were 
chosen by the tree, and MENT, MCON, and MSTD were  
 
SP MENT MEA

N 
MCO
R 

MCON MHOM MDIS MSTD VENT 

10 3 4 5 6 7  1 2 
15 2  4  5 1  3 
20 2   1     
25 2 3 5 1   4 6 
30 2 5 6   1 4 3 
35 2 4  5  3 1  
40 2   3   1  
45 1 4 5 2 6 7 3  
50 2     1   
55 1     2   
60 1     2   
65 1 4  2   3  
70 1   2  4 3  
75 1   2   3  
80 1   2   3  
 



 

Table 2. Order of texture features chosen by a decision tree for 
each scale parameter (SP). 

selected in the same order from scale 65 to 80. The cross-
validated relative cost (CVRC) of the decision tree, a measure 
of misclassification, representing the error rate of the tree, 
showed that the error rate decreased from 60% at scale 10 to 
20%, the lowest value, at scale 60 (Figure 1). Those results 
were mirrored by the overall accuracies and the KIA values, 
which increased with increasing segmentation scales, reaching 
the highest values of 98% and 0.97 KIA at scale 65.  
 

 
 
Figure 1. Cross-validated relative cost (CVRC) or error rate of 

decision trees for 15 segmentation scales. 
 

 
3.2 Correlation of Texture Features 

The highest correlation coefficients that remained stable across 
all scale parameters were found for MCON-MDIS and VASM-
VENT (Figure 2), which was expected based on the equation 
structure (Hall-Beyer 2007) (see Table 1). For that reason, a 
graph of correlation coefficients for MDIS was omitted from 
Figure 2, because it was very similar to MCON. The values 
exported from Definiens for MASM for segmentation scales 
greater than 35 were all 0, therefore only coefficients up to that 
scale are shown in the graph.  
 
MCOR, MMEAN, and MENT had the least correlation with 
other texture measures, although individual responses varied for 
some segmentation scales. We observed a definite change in 
correlation coefficients with scale parameter for several texture 
measure pairs. Some displayed decreasing correlation with 
increasing segmentation scale (MCON-MSTD, MHOM-
MMEAN), others showed increasing correlation with increasing 
segmentation scale (MCON-VENT, MSTD-VENT).  
 
Comparisons with other studies using texture at multiple scales 
can only be made with pixel-based studies, because to our best 
knowledge, there have been no studies of the use of various 
texture measures and their correlations in OBIA across multiple 
scales. While we saw several similarities with the choice of 
texture measures across multiple image types from other 
studies, our results with regard to correlation of texture 
measures are quite variable compared to other studies. This is 
understandable, because pixel-derived texture measures are 
compared with object-derived texture measures. In the 
following comparison, we are describing texture measures from 
our study using the abbreviation (i.E. MCON), and texture 
measures from other studies spelled out (i.E. contrast).  
 
Clausi (2002), and Barber and LeDrew (1991) both reported 
that contrast and dissimilarity were strongly correlated, similar 
to our findings. Clausi (2002) noted that correlation was not 

correlated with any other texture measure and that there were 
high correlations between entropy and angular second moment. 
In our study, MENT and MASM had a high correlation only at 
the 2 finest scales, then decreased to correlations near 0 at scale 
25. Although MCOR was one of the texture measures least 
correlated to all others, it still displayed considerable ranges in 
correlation for different scales. For example, after scale 30, 
correlation coefficients between MCOR and MCON increased 
to 0.6 and up to 0.7 for the coarsest scale. Generally speaking, 
Baraldi and Parmiggiani (1995) and Barber and LeDrew (1991) 
found higher correlation coefficients than we did. Baraldi and 
Parmiggiani (1995) determined that contrast and homogeneity 
were strongly and inversely correlated, while we observed an 
inverse, but weak correlation, with the highest correlation 
coefficient in our study at 0.5.  
 
At scales 65-80, the decision tree selected MENT, MCON, and 
MSTD. Hall-Beyer (2007) placed these three texture measures 
in separate groups, whereby MENT is in the Orderliness group, 
MCON in the Contrast group, and MSTD in the Statistics 
group. In terms of choosing uncorrelated variables, Hall-Beyer 
(2007) advised to pick texture variables from separate groups, 
which our analysis appeared to corroborate. Our correlation 
analysis showed that, although MENT and MCON were closely 
correlated at scales smaller than 40, the two variables were not 
correlated at the coarser scales, where the accuracy was highest. 
The same held true for MCON and MSTD, and for MENT and 
MSTD. At finer segmentation scales, correlated variables were 
selected by the decision tree, and this knowledge is especially 
useful at fine scales, because classification times increase 
dramatically at finer scales and with multiple texture features.  
 
At finer segmentation scales (below 20-25), correlation 
coefficients often changed at a greater rate from one scale to the 
next, while at coarser segmentation scales, the rate of change in 
correlation coefficient from one scale to the next was smaller 
(Figure 2a). Because image objects are very small at fine scales, 
the ratio of edge to interior pixels is greater at fine scales than at 
coarser scales, possibly resulting in more accurate 
representation of texture at coarser scales. In other words, if the 
image object is too small, texture may not be an appropriate 
feature to use, and correlations between texture pairs can vary 
greatly. For example, for MCONT-VENT, correlations changed 
from a strong negative correlation at fine scales to no 
correlation at scale 20, and then to correlations of 0.7.  
 
In our study, observations with regard to the stability of 
correlations from one scale to the next mirrored the error rate of 
the decision tree (Figure 1.) as well as overall accuracy. At 
smaller scales, overall accuracy using texture measures was 
around 90% at scales up to 25, then increased to accuracies in 
the high 90% range at scales greater than 45. While those 
accuracy values are relatively high for all segmentation scales, 
we observed a marked increase in accuracy after scale 40. 
 
In pixel-based texture calculations, the boundary problem 
increases with texture window size (Coburn and Roberts, 2004), 
as windows can straddle the boundary between ecotones or 
different landscape features. As the segmentation scale 
increases in OBIA, adjacent image objects differ more with 
regard to their homogeneity than adjacent image objects at very 
fine scales, and the boundary problem actually decreases with 
segmentation scale. For that reason, texture from pixel-based 
analysis calculated with different window sizes has very 
different results than texture from OBIA calculated at different 
segmentation scales.  



 

 
 

Figure 2. Correlation coefficients of texture measures for 15 segmentation scales. Shown are correlations of a) MHOM, b) MCON,  
c) MENT, d) MASM, e) MMEAN, f) MSTD, g) MCOR, and h) VASM. Texture measures for comparison are shown in the legend. 

 
 

 
 

Figure 3. The texture measure entropy at eight segmentation scales from 10 to 80. 
 

 
 
 
 

 
 
 
 



 

What remains the same in pixel- or object-based analysis, 
however, is the fact that texture is highly sensitive to scale, and 
an appropriate scale has to be chosen for an effective and 
meaningful analysis. Fewer variables are preferred, especially 
if calculations are computer intensive, as they are for texture. In 
this study, MENT was the texture measure ranking either first 
or second from scale 15 to 80 and was chosen in every decision 
tree. It also had the least correlation with other texture 
measures, and if only one variable were chosen for analysis, it 
would be MENT. Figure 3 shows the texture measure MENT at 
all segmentation scales. Gray values describing Bare Ground, 
Grass, and Shrub show more differentiation at coarser than at 
finer scales.  
 
 

4. CONCLUSIONS AND FUTURE WORK 

Using a decision tree allowed for reducing the number of input 
texture variables and assisted with the selection of the image 
analysis scale, which was confirmed based on overall accuracy 
and KIA values. Correlation analysis for texture pairs was used 
to further reduce the number of input variables.  In our study, 
correlated variables were selected by the decision tree at finer 
scales, but less so at the coarser scales. Reducing data 
dimensionality is especially important when texture is used at 
fine analysis scales due to computation times.  
 
We observed both increasing and decreasing correlation 
coefficients for texture pairs with increasing segmentation 
scales, with larger variability from one scale to the next at finer 
segmentations and more consistency in correlation at medium 
to coarse scales. This study suggests that the boundary problem 
common to texture analysis in pixel-based approaches appears 
to decrease in object-based image analysis with segmentation 
scale. 
 
In this study, the highest overall accuracy, the CVRC of the 
decision trees, and the stability of correlation for variable pairs 
from one segmentation scale to the next all pointed to an 
optimal segmentation scale at or around 60. Additional studies 
in other vegetation communities and/or the use of more classes 
are needed to confirm if CVRC of decision trees coupled with 
correlation analysis can be used to determine not only the most 
suitable variables, but also the analysis scale. This would 
reduce computation times significantly, because calculating 
overall accuracies at multiple scales is computer intensive, 
while decision tree analysis can be performed more rapidly. 
Tools that allow for the determination of the optimal 
segmentation scale as well as feature selection are crucial in 
OBIA using Definiens, because much time is spent on those 
two aspects of image processing.  
 
This approach allowed for determining the most suitable and 
uncorrelated texture measures at the optimal image analysis 
scale for mapping vegetation structure groups with sub-
decimeter resolution imagery. In future studies, we plan to map 
individual species with this approach and incorporate these 
techniques into rangeland monitoring protocols with very high 
resolution imagery acquired either with piloted or unmanned 
aircraft.  
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