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PREDICTION OF KERNEL DENSITY OF CORN USING 
SINGLE-KERNEL NEAR INFRARED SPECTROSCOPY 

P. R. Armstrong,  J. G. Tallada 

ABSTRACT. Corn hardness is an important property for dry and wet-millers, food processors, and corn breeders 
developing hybrids for specific markets. Of the several methods used to measure hardness, kernel density measurements 
are one of the more repeatable methods to quantify hardness. Near infrared spectroscopy (NIRS) provides an attractive 
method to measure kernel density as it can also measure other compositional attributes. Some commercial instruments do 
measure density of bulk samples. Single-seed NIRS, however, may provide additional information and capabilities by 
measuring density of individual kernels. This has potential applications for breeders or quality control wishing to look at 
variance within a sample and for sorting. This study examined the accuracy of NIRS to predict density from single seeds of 
corn. Absorbance spectra (904 to 1685 nm) were collected on single seeds from 67 food hybrids and 40 commodity 
hybrids. Moisture adjusted density measurements, using 12-g samples, were made using a gas pycnometer and used as the 
reference method in the development of the prediction equation. The best prediction model developed from partial least 
squares regression between averaged spectra and density values had a standard error of cross (SECV) validation of 0.018, 
coefficient of determination (R2) of 0.79 and the ratio of the standard deviation to the standard error for the cross-
validation model (RPD) of 2.1. Predictions for a validation set of 35 samples yielded a standard error of prediction (SEP) 
equal to 0.016, R2 = 0.76 and the ratio of the standard deviation to the standard error for the cross-validation model 
(RPD) = 1.9. Other models developed using different spectral pretreatments yielded very similar statistics. Ten samples 
were subsequently sorted into low, medium, and high density fractions based on spectroscopic predictions. Pycnometer 
measurements on the fractions verified they were correctly sorted by density and are correlated to starch content  
(r = 0.42) and oil content (r = -0.39). 
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he hardness of corn kernels is a critical quality 
parameter defining the suitability for different 
processes and the quality of finished products. 
Physically, the size and shape of the kernels along 

with its mass, density, resistance to milling, and 
compression define the hardness of corn (Fox and Manley, 
2009). Pomeranz et al. (1984) cited hardness affecting 
several factors such bulk density, storability, insect and 
fungal infestation, and susceptibility to breakage and thus 
impacting processing operations (milling quality, energy 
requirement, wet and dry milling yield characteristics). Dry 
millers prefer hard kernels to maximize large flaking grits 
for breakfast foods and snack products (Siska and 
Hurburgh, 1996; Mestres et al., 1995). On the other hand, 

wet millers require softer grains because of shorter steeping 
times and easier separation of starch and protein (Wu and 
Berquist, 1991). 

Fox and Manley (2009) made an extensive literature 
review of the different methods used for testing hardness in 
maize kernels. These included particles size index, Stenvert 
test, kernel density, tangential abrasive dehulling, rapid 
visco-analysis, Roff milling index, compression tests, near-
infrared spectroscopy and vitreousness. An interesting 
point in their discussion is that even with such wide 
assortment of techniques, there has been no accepted 
universal standard for assessing hardness in maize. There 
could be several reasons for this such as repeatability of the 
method, ease, and cost of analysis, need for a non-
destructive method and end-use processing methods 
matching a particular hardness method.  

Near-infrared reflectance spectroscopy (NIRS) has been 
shown as a versatile technique not only because many 
compositional parameters can be measured simultaneously 
but also because of its speed and minimal preparation of 
samples for analysis. A disadvantage of this technique for 
predicting hardness lies in the fact that calibration models 
would be dependent on measuring a parameter that has 
direct or indirect relation to hardness measurements such as 
density (Siska and Hurburgh, 1996), TADD, Tangential 
abrasive dehulling device, (Wheling et al., 1996; Lee et al., 
2005) and the Stenvert test (Armstrong, et al., 2007). 
Pomeranz et al. (1984) measured high correlation between 
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density and near infrared (NIR) reflectance at 1680 nm for 
four hybrid groups of corn. Near infrared transmittance 
studies (Robutti, 1995; Siska and Hurburgh, 1996; Lee et 
al., 2005) also found useful predictions of density but most 
studies have dealt with the shorter wavelength region of the 
NIR (600 to 1100 nm). Williams et al. (2009) used 
hyperspectral imaging to distinguish between hard and soft 
endosperm within a kernel and to classify kernels as hard, 
intermediate, or soft. They also showed that spectral 
differences between the two endosperm types were most 
pronounced at 1450 nm.  

Single kernel density measurements should provide an 
effective tool for breeders to measure hardness. Thompson 
and Goodman (2006) utilized density measurements for 
selecting kernels to increase kernel density in a 
backcrossing program for two inbreds of maize. They used 
floatation and the mass difference in air and suspension in 
water as methods to determine density on small 20- to 30-g 
samples. Both methods were effective in selecting kernels 
to increase density during backcrossing. These density 
measurements are somewhat tedious though and selecting 
the 20- to 30-g subsamples may be somewhat random. If 
single-kernel density could be measured easily, screening 
samples would be much more effective. Dowell et al. 
(2009) has also shown single-kernel selection using NIRS 
could be used to increase hardness in wheat.   

A gas pycnometer instrument for measuring porosity, 
true and apparent density in corn, wheat, and sorghum has 
been demonstrated by Chang (1988). In his study, he 
cautioned that the density measurements for whole kernels 
are not true density because the pore spaces within the 
seeds are not reached by the measuring gas. Additionally, 
moisture within the grains can naturally affect a number of 
properties such as bulk density (test weight), kernel density, 
and breakage susceptibility. To account for this, Dorsey-
Redding et al. (1990) developed a mathematical moisture 
correction model for density measurements on samples 
having moisture contents in the range of 11% to 22% (wet 
basis). The objectives of this study were to develop non-
destructive measurement of corn kernel density using 
single-kernel NIRS and determine if hybrid samples can be 
segregated by density.   

MATERIALS AND METHODS 
CORN SAMPLES 

Two sets of samples were used in the study. The first set 
consisted of 40 samples of various yellow corn hybrids 
obtained from the Iowa State University Grain Quality 
Laboratory. These samples were typical commodity corn 
samples obtained during the 2009 growing season in Iowa. 
Bulk analyses of protein, starch, oil, and pycnometer 
density were provided. Reference measurements for the 
Iowa samples were measured by the Iowa State Grain 
Quality Lab (GQL) using the following standards, AOAC 
990.03 for protein, AOAC 920.39 for oil, and Corn 
Refiners Association A-20 for starch. Measurement for two 
of these samples were obtained using an Infratec 1241, 
FOSS (Eden Prairie, Minn.), calibrated and maintained by 

the GQL as opposed to using the above standards. Standard 
error of prediction (SEP) values for their calibrations were 
0.53%, 0.32%, 0.74% for corn protein, oil, and starch, 
respectively. Seed density was also measured by Iowa State 
using an AccuPyc 1330 pycnometer (Micromeritics 
Instrument Corp., Norcross, Ga.). The second set consisted 
of 67 commercial white and yellow corn samples obtained 
from Frito-Lay Inc. (Gothenburg, Neb.). These samples 
were part of an internal evaluation of food corn quality by 
Frito-Lay in 2010. Chipped or broken seeds and dockage 
were manually removed from all samples prior to lab tests.   

COLLECTION OF SINGLE-SEED NIR SPECTRA  
A novel single-kernel NIRS instrument, principally 

designed to rapidly measure kernel composition at a rate up 
to three per second was used for this study. A conceptual 
description and the method of operation are described by 
Armstrong (2006) and its use is also documented by 
Spielbauer et al. (2009) and Tallada et al. (2009). The 
instruments major components were an NIR spectrometer, 
fiberoptic cable, light tube assembly, control board, and 
computer. The NIR spectrometer (NIR256-1.7T1-
USB2/3.1/50um SNIR 1074, Control Development, Inc., 
South Bend, Ind.) has a thermoelectrically cooled 256-pixel 
InGaAs diode array sensor with a spectral measurement 
range of 904 to 1685 nm. The light tube assembly used a 
12-mm internal diameter glass tube illuminated by 
48 tungsten light bulbs (Part 1150, Gilway Technical Lamp, 
Woburn, Mass.) equidistantly arranged in six rows along an 
aluminum tube concentric to the glass tube. A 2-m long 
BIF600-VIS-NIR (400 to 2500 nm) bifurcated fiber-optic 
assembly (Ocean Optics, Dunedin, Fla.) with a 600-um 
core diameter was attached at both ends of the light tube 
with the common end connected to the spectrometer. The 
assembly was oriented at 45° to horizontal to allow a kernel 
to slide down the glass tube as a spectrum was taken. A 
photo-electric switch mounted at the upper end of the glass 
tube was used to trigger the spectrometer when a kernel 
passed through it and slide down the tube. A Microsoft 
Visual C++ 6.0 program was written and used for 
processing spectral data and other control functions. The 
program was interfaced to the spectrometer via a software 
library supplied by the spectrometer manufacturer. 

The instrument was allowed to warm up for at least one 
hour to stabilize light output and spectrometer electronics 
prior to spectra collection. Periodic dark background 
measurements were made to correct for instrument signal 
drift. Similarly, measurements of an illuminated white 
reference (Spectralon®, Labsphere, North Sutton, N.H.) 
were used for the reflectance computation. Reflectance 
spectra for seeds were collected and saved for processing 
using a 43-ms integration period. 

REFERENCE MEASUREMENT OF KERNEL DENSITY  
A helium gas pycnometer (model SPY2, Quantachrome 

Corp., Syosset, N.Y.) was used to measure density values 
for Frito-Lay samples and to verify previous density 
measurements of Iowa State University samples. The 
principle behind the instrument and general operation was 
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described by Chang (1988). In this study, the small holding 
cell was used to hold about 10 to 12 g of corn. 
Measurements were taken twice for each sample with an 
allowable tolerance of 0.01 g/cm3 for replicate 
measurements. The sample mass was measured using a  
10-mg resolution analytical balance. Grain moisture 
content was measured separately for each sample in 
duplicate using the standard air-oven method (ASABE 
Standard S352.2, 2008) at 103°C for 72 h. Moisture was 
corrected using the modified Dorsey-Redding et al. (1990) 
equation as was done by Siska and Hurburgh (1996):  

 Df = Di – 0.00289 (Mf – Mi)  

where Df and Di are the final and initial density values 
(g/cm3) for corn at Mi moisture content corrected to Mf 
(14% wet basis).  

NIRS KERNEL DENSITY PREDICTION MODEL 

DEVELOPMENT  
Fifty single-kernel spectra were collected from a subset 

of each sample using the methods previously described. A 
composite absorbance spectrum was computed for each 
sample by first applying a mean centering spectral pre-
treatment on the individual seed spectrum to account for 
baseline shift and bring the spectra to a common axis, and 
then averaging the 50 spectra. Only the range 950 to 
1650 nm was considered because of the low signal-to-noise 
ratio near spectra edges. Thus, a set of 107 mean 
absorbance spectra were matched with their mean reference 
kernel density values for model development.  

Partial least squares regression (PLS) analysis was 
performed using the TOMCAT statistical package 
(Daszykowskia, 2007) to develop a prediction model for 
density from the mean-centered spectral data. A standard 
normal variate (SNV) spectral pre-treatment was also 
examined during model development. Full cross-validation 
regression modeling of the entire set (n=107) was initially 
used to establish a preliminary number of factors for the 
model. To further test prediction ability, the samples were 
divided into calibration and validation samples. This was 
done by sorting reference density values into ascending 
order and selecting every third sample for validation 
samples (n=35) with the remaining used to develop the 
calibration model (n=72). This assured a broad range of 
reference values in both the calibration and validation set.  

NIRS SAMPLE SORTING BY KERNEL DENSITY 
Ten sample sets from the validation set were sorted into 

high and low fractions using the developed PLS model. 
These samples represented a range of low, medium, and 
high density kernels. The procedure to set sorting 
thresholds was to first determine the NIRS predicted 
density for 48 kernels, calculate the mean and standard 
deviation, and set thresholds at the mean, plus and minus 
one-half the standard deviation. Kernels were then 
measured and sorted into low, medium, and high density 
fractions based on these thresholds. Because of single-
kernel prediction variability, the average of three 
measurements for each kernel was used for sorting. Each 

sorted fraction contained a minimum of 10 g of kernels in 
order for pycnometer measurements to be taken. Pycnomter 
measurements were then made on the low, medium, and 
high density fractions. Pycnometer measurements were 
duplicated and averaged for all readings. Sorted sample 
fractions were measured for bulk composition using a 
Perten DA7200 (Perten Instruments, Springfield, Ill.) 
instrument to determine if fractions were compositionally 
different. The DA7200 is a bulk sample, near-infrared 
reflectance instrument with calibrations for protein, oil, 
starch, and density provided by the manufacturer.  

RESULTS AND DISCUSSION  
NIRS SAMPLE SET COMPOSITION 

A summary of composition and density values for the 
Iowa and commercial hybrid corn samples are shown in 
table 1. Although the measured density values had low 
coefficient of variation, the experimental range from 1.21 
to 1.36 g/cm3 represent a reasonable span of kernel density. 
Simple correlations between protein, starch, and kernel 
density are shown for Iowa samples that had reference 
measurements performed. Protein had reasonable 
correlation with density while starch had low correlation. 
Correlations between composition parameters are shown in 
table 2 and shows good correlation of protein with density 
and starch, and starch and oil, starch being inversely 
correlated in all cases. Other research has also shown starch 
to be inversely correlated with other parameters to varying 
degrees (Dorsey-Redding et al., 1990; Ngonyamo-Majee 
et al., 2008).  

NIRS KERNEL DENSITY PREDICTION MODEL  
Table 3 shows descriptive statistics obtained for PLS 

regression models to predict kernel density from composite 
NIR absorbance spectrum. A cross validation model was 
completed for all 107 samples as well as a calibration 
model, 72 samples, to predict 35 validation samples. Mean 
centered (MC) spectral pre-treatment was used on all 
spectra, with and without the SNV pre-treatment. The 
performance statistics are similar for both pre-treatments. 
Using the Iowa samples alone in an earlier study had 
resulted in much better model statistics than what was 
obtained using this larger sample set. The incorporation of 
the Frito-Lay samples resulted in poorer model prediction 
performance. Nevertheless, this should improve the 
robustness of the model. Model statistics for the validation 
set using only MC spectra (R2 = 0.74, SEP = 0.018, RPD = 

Table 1. Summary of statistical composition of samples. 
Component[a] N Range Mean SD[b] CV% 
 Iowa State University Samples 
Density (g/cm3) 40 1.21-1.35 1.27 0.035 2.8 
Protein (%) 40 6.43-15.29 9.46 2.05 21.8 
Starch (%) 35 63.70-73.68 70.05 2.63 3.8 
Oil (% ) 40 3.29-9.87 5.12 1.68 32.8 
 Frito-Lay Samples 
Density (g/cm)3 67 1.26-1.36 1.30 0.027 2.1 
[a] Protein, starch, and oil are on a dry matter basis. 
[b] SD – Standard deviation; CV – Coefficient of variation;  
 R2 – Coefficient of determination. 
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1.8) suggest it is acceptable for rough screening of samples. 
RPD is the ratio of the standard deviation of the sample 
measurements and the standard error of the model. 
Prediction values are plotted against reference density in 
figure 1. Specific wavelength regions that strongly 
influence prediction as shown by correlation coefficients 
from regression (fig. 2), are 960*, 1000, 1125, 1180 to 
1280, 1366, 1401*, and 1650 nm (Numbers with an asterisk 
are wavelengths close to those typically associated with 
water adsorption). The broad region 1180 to 1280 
encompasses some wavelengths associated with protein. In 
general though, density is a physical property determined in 
part by chemical composition and by macro and micro-

chemical structure. In this regard, density prediction by 
NIRS may depend on a combination of compositional and 
structural characteristics, similar to particle size 
measurement by NIRS. Particle size measurement is 
basically a measurement of light scattering and is not 
necessarily wavelength dependent (Pasikatan, 2001).  

While sample screening may be useful, several 
commercial NIRS instruments have this ability. A density 
calibration developed by Siska and Hurburgh (1996) for an 
Infratec 1225 Grain Analyzer reported a standard error of 
prediction (SEP) of 0.0164 gm/cm3 and R2 = 0.76. The 
samples used for calibration intentionally covered a wide 
temperature range to make predictions more robust. Their 
SEP is about the same as the error reported for the single 
kernel instrument in table 3. The standard error of cross 
validation for density measurement with a Perten DA7200 
is 0.012 gm/cm3 (personal communication, Perten 
Instruments, 2010).   

Fox and Manley (2009) explained that there can be a 
fairly good correlation between kernel hardness and protein 
and starch composition. This study was able to verify a 
good linear correlation between kernel density and protein 
(r = 0.77) for Iowa State samples (table 1), but the 
correlation with starch was weak (r = -0.28). Dorsey-
Redding et al. (1990) found a weak but still significant 
relationship of density with protein (r = 0.39 to 0.33). The 
existence of correlation between kernel density and protein 
suggest indirect prediction of density since protein is 
commonly predicted using NIR spectroscopy. This result is 
similar to that encountered by Kovalenko et al. (2006) for 
predicting amino acids in corn given the fact that amino 
acid contents are strongly correlated with protein content. 
They suggested that to verify a prediction model for an 
amino acid that does indeed predict the amino acid, the 
model R2 value should substantially exceed the squared 
correlation coefficient between an amino acid and protein 
values. They reasoned that this test requires that the 
model’s prediction ability to exceed any correlation 
existing between an amino acid and protein. For the density 
model, the coefficient of determination (0.73) greatly 
exceeded the squared correlation coefficient between 
density and protein (0.52). Based on these criteria, density 
should not be predicted entirely from an inter-relationship 
with protein. It is not clear how density is predicted by 
NIRS but it must be related to compositional parameters 
that affect the physical structure and overall hardness of the 
kernels.   

Table 2. Correlation coefficients between  
Iowa State composition values in table 1. 

 Starch Oil 
Pycnometer 

Density 
Protein -0.69 0.09 0.77 
Starch  -0.76 -0.28 
Oil   -0.23 

Table 3. Summary of PLS model statistics for predicting kernel density, g/cm3 from single kernel spectra.[a] 
Modeling N Density Range Mean SD Factors Std Error  RPD R2 
 Mean Center Only 
Cross validation 107 1.212-1.361 1.289 0.033 4 0.017 1.9 0.72 
Calibration 72 1.212-1.361 1.289 0.034 4 0.016 2.1 0.78 
Validation 35 1.214-1.357 1.289 0.032 4 0.018 1.8 0.74 
 Mean Center and SNV 
Cross validation 107 1.212-1.361 1.289 0.033 4 0.017 1.9 0.73 
Calibration 72 1.212-1.361 1.289 0.034 4 0.016 2.1 0.79 
Validation 35 1.214-1.357 1.289 0.032 4 0.017 1.9 0.76 
[a] Mean – mean density of samples; SD – standard deviation of density samples; Factors – number of PLS factors; Std Error – standard error of PLS  
 model; RPD – ratio of the sample standard deviation to the standard error for the model; R2 – coefficient of determination of PLS model. 

Figure 1. Plot of predicted vs. reference corn density for 35 validation
samples.  

 

Figure 2. Correlation coefficients for the PLS prediction model for
corn density using mean centered spectra.  
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NIRS DENSITY SORTING  
Samples sorted by density were consistently segregated 

into low, medium, and high density fractions with the 
average density lying somewhere within this range 
(table 3). The weight percentage of each density fraction 
accumulated during sorting shows some variance between 
these fractions. A graph of the sorted fractions is shown in 
figure 3. The BI sample shows the least amount of 
difference between high, medium, and low values and 
indicates that there is little density variance within the 
sample. However, the standard deviation of density 
predicted by NIRS shows this sample had somewhat higher 

variation compared to other samples. Because of the error 
in predicting density with NIRS it is believed that the BI 
sample variance is actually small based on pycnometer 
density measurements. To further substantiate this, the 
standard deviation of NIRS predictions was compared to 
the difference between the high, medium, and low 
pycnometer density measurements. It would be expected 
that these measurements would have some correlation with 
each other but none was found.  

Sorted fractions shows densities of the fractions are 
consistent with pycnometer readings and single kernel 
NIRS average predictions (table 4). Composition of sorted 
fractions are shown in table 5 and were used to derive 
correlations between compositional parameters, table 6. 
Correlations between different compositions shows 
pycnometer density and protein correlation was very poor 
(r= -0.19) and contrasts to that found for the Iowa State 
samples in table 1, (r= 0.77).  Correlations between 
pycnometer density and starch or oil are somewhat 
improved over Iowa State samples.  

Using the average NIR predicted density on a 
subsample, prior to sorting, was considered the best method 
in obtaining a workable threshold for density sorting as the 
error in predicting density makes it difficult or impossible 
to select the threshold based on a pre-determined density 
value. Sorting samples into smaller subsets may be possible 
but was not attempted in this study. The NIRS prediction 
model developed should have value for screening between 
samples, but more importantly, for sorting within a sample 
which would be useful for breeders and agronomists. Singh 
et al. (2005) examined the effect of field nitrogen levels on 

Figure 3. Pycnometer density measurements of sorted samples and
from NIRS model predictions.   

 
Table 4. Pycnometer density measurements of sorted samples and from NIRS model predictions. 

Sample ID[a] AJ AO AG BI R E BO N BE BC 
 Pycnometer Density 

Low density fraction 1.29 1.24 1.30 1.37 1.24 1.23 1.30 1.28 1.34 1.32 
Medium density 1.32 1.26 1.31 1.37 1.27 1.26 1.32 1.31 1.36 1.34 
High density fraction 1.33 1.26 1.33 1.37 1.28 1.26 1.33 1.32 1.36 1.36 
  Weight Percentage % of Sorted Fractions 
Low 33 42 31 23 45 42 29 24 41 39 
Medium 39 31 30 36 26 27 36 35 29 25 
High 28 27 39 41 29 31 35 41 30 36 
 NIRS Density Predictions 
NIRS averaged prediction from  
   cross validation model 

1.30 1.24 1.32 1.33 1.28 1.26 1.31 1.27 1.33 1.33 

Standard Deviation of NIRS  
   predicted values 

0.03 0.04 0.05 0.06 0.06 0.06 0.06 0.04 0.04 0.05 

[a] Letters were used for sample identification and have no significance other than identification. 

Table 5. Dry basis composition of sorted fractions measured by DA7200.  
 

Sample ID 
  

AJ AO AG BI R 
Fraction   Low Med High   Low Med High  Low Med High  Low Med High   Low Med High 

 
Protein (%db) 8.20 7.94 7.67 10.09 10.21 10.18 7.24 7.74 8.45 9.70 8.21 7.60 7.86 8.67 8.87 
Oil (%db) 4.35 6.21 7.47 5.59 5.62 5.88 5.50 5.45 4.98 5.59 4.87 3.42 5.38 4.32 4.16 
Density 1.24 1.27 1.28 1.17 1.19 1.19 1.27 1.27 1.28 1.24 1.25 1.29 1.19 1.30 1.34 
Starch (%db)   69.3 69.7 72.2   65.6 65.9 66.2  70.6 70.4 69.6  66.4 66.8 71.9   68.7 71.2 72.5 

Sample ID   E   BO  N  BE   BC 
Fraction   Low Med High   Low Med High  Low Med High  Low Med High   Low Med High 
 
Protein (%db) 8.96 8.76 8.39 8.81 9.48 9.92 8.05 8.58 9.64 7.09 8.62 9.27 8.66 8.69 8.98 
Oil (%db) 6.42 6.32 5.89 3.75 3.98 5.10 4.57 5.21 5.64 3.87 4.02 4.71 5.96 3.91 3.73 
Density 1.18 1.21 1.25 1.22 1.25 1.27 1.25 1.27 1.29 1.26 1.31 1.33 1.20 1.29 1.33 
Starch (%db)   66.9 66.8 68.4   70.7 68.5 68.5  70.3 69.8 70.1  70.0 71.3 73.5   67.2 68.4 73.3 
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oil, protein, and extractable starch. Findings suggest 
nitrogen levels strongly influenced protein and extractable 
starch levels and thus some control of composition can be 
achieved through agronomic practices. Kernel density traits 
might potentially be controlled in a similar manner 
provided a better understanding of what compositional 
traits affect density. Sorting of hybrids by density and 
measuring composition of these fractions may help 
establish better correlations with chemical composition and 
provide insight on the effects of agronomic and genetic 
factors. Current commercial NIR instruments can screen 
bulk samples for density but not sort samples into fractions.   

CONCLUSIONS 
Measurement of average kernel density using the single-

kernel NIRS prediction model provides reasonable 
accuracy for discrimination between samples. The model 
developed using partial least squares regression between 
averaged spectra and density values had a SECV of 0.018 
and R2 of 0.79 A validation set of 35 samples yielded a 
standard error of prediction SEP of 0.016, and R2 of 0.76. 
The variance of NIRS density predictions for single kernels 
within a sample may not give an accurate measure of true 
variance. The real value of the single-kernel method is the 
ability to sort a sample into density fractions using the 
study's procedure which will allow the examination of the 
structural and compositional changes between sorted 
fractions. Pycnometer measurements show sorted fractions 
were effectively sorted and the density of the fractions were 
correlated to starch content (r = 0.42 and oil content (r =  
-0.39). From a scientific perspective, a better understanding 
of how kernel density is predicted with NIRS may provide 
improved measurement.    
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Table 6. Correlation coefficients between the fraction compositions 
measured by the DA7200 (table 5) and Pycnometer density (table 4). 

 Starch[a] Oil Density Pycnometer Density 
Protein -0.44  0.10  -0.25 -0.19 
Starch  -0.42  0.83 0.42 
Oil   -0.45 -0.39 
Density    0.63 
[a] Numbers in bold are significant at α = 0.05. 


