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There is an increased consumer interest in the potential health 
benefits from regular consumption of blueberries (Vaccinium 
sp.) due to their antioxidant properties shown to be corre-
lated to inhibition of cancer cell proliferation.1 A major quality 
concern for the blueberry industry is the internal infestation of 
fruit by the blueberry fruit fly larvae.

For the last few decades, near infrared (NIR) spectroscopy 
has shown considerable promise for the non-destructive 

analysis of food products and is ideally suited for on-line 
measurements in the agrofood industry due to its advan-
tages: minimal or no sample preparation, versatility, speed 
and low-cost of analysis.2 Most of the well-known applications 
of NIR spectroscopy in fruits3 have focused on the quantita-
tive prediction of chemical composition, internal damage and 
ripening stage in various fruits such as: kiwifruit,4,5 apple and 
mango,6,7 cherry,8 grape,9 plum and nectarine10 and dates.11 
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A near infrared (NIR) spectroscopy system for rapid, automated and non-destructive detection of insect infestation in blueberries is 
desirable to ensure high quality fruit for the fresh and processed markets. The selection of suitable instruments is the first step in sys-
tem development. Three diode array spectrophotometers were evaluated based on technical specifications and capacity for larva detec-
tion in wild blueberries (Vaccinium angustifolium) using discriminant partial least squares (PLS) regression models. These instruments, 
differing mainly in wavelength range and detector type, comprised two spectrophotometers with scanning wavelength ranges of 650–
1100 nm and 600–1700 nm and an imaging spectrograph with the scanning range of 950–1400 nm. The assessed factors affecting predic-
tions included signal-to-noise ratio, wavelength range, resolution, measurement configuration, spectral pre-processing and absorb-
ance bands related to infestation. The scanning spectrophotometers demonstrated higher signal-to-noise ratios with infestation pre-
diction accuracies of 82% and 76.9% compared to the imaging spectrograph with 58.9% accuracy. Resolution, spectral pre-processing 
and measurement configuration had a lesser effect on model accuracy than wavelength range. The 950–1690 nm bands were identified 
as important for infestation prediction. In general, NIR spectroscopy should be a feasible technique for rapid classification of insect 
infestation in fruit.
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The limited number of reports of NIR technology on blueber-
ries have focused on predicting firmness,12 soluble solids 
content and bioactive compounds (anthocyanins, flavanoids, 
phenols and ascorbic acid),12,13 as well as detection of internal 
foreign substances by NIR imaging.14 However, to the best of 
our knowledge, the potential of NIR technology for the non-
invasive detection of larvae infestation in individual blueber-
ries has not been addressed in the literature.

NIR spectroscopy has been successfully applied for the 
prediction of internal insect infestation in grains. Ridgway and 
Chambers15,16 reported using reflectance mode NIR spec-
troscopy to detect external and internal insect infestation of 
wheat kernels. They attributed their success to the detection 
of insect protein and chitin and moisture differences in the 
infested wheat samples. Dowell et al.17 were able to detect 
larger larvae of three different species using an automated 
NIR system. Another application18 resulted in the detection of 
parasitised rice weevils internal in wheat kernels.

The accuracy of a spectroscopic measurement relies mainly 
on the technical specifications of the instrument and on sample 
presentation. The type of light source and detector technology, 
measurement principle and configuration, signal-to-noise 
ratio, wavelength range and resolution are among the most 
important technical parameters. The selection of an instru-
ment suitable for on-line blueberry measurements involves 
additional constraints: it should be small in size, deliver robust 
performance in vibrating environments and operate in reflect-
ance mode. These requirements make it more difficult to 
decide which instrument should be preferred for infestation 
detection in blueberries.

Previous studies of fruit and grain testing using NIR have 
largely involved research grade instruments, with a wave-
length range between 500–2500 nm, which are often unsuit-
able for a manufacturing environment.6–8,17–20 However, 
multiple studies have reported successful application of 
low-cost, shortwave (500–1100 nm) NIR instruments for 
fruit quality assessment.9,21–23 Walsh et al.22 compared three 
instruments with diode array detectors and a 650–1050 nm 
wavelength range and recommended instruments with 
high signal-to-noise ratio, high sensitivity, rapid spectral 
acquisition and tolerance to vibration and dust for on-line 
assessment of melons. Perez-Mendoza et al.24 compared 
two NIR spectrophotometers, a diode array and a scan-
ning monochromator, and one FT-NIR interferometer with 
wavelengths spanning the 400–2500 nm range for deter-
mining the number of insect fragments in flour from 
infested wheat. They identified wavelengths contributing 
to detection believed to correspond to protein, lipids and 
starch NIR absorbance. Paz et al.25 compared a scanning 
monochromator, a diode array and a combination instru-
ment within the 400–2500 nm range, which showed similar 
accuracy in measuring the quality of apples. Resolution 
is also an important technical characteristic. Schimleck 
et al. demonstrated that the quality of the calibrations for 
various wood properties was affected to different degrees 
as resolution was decreased.26

NIR detection of internal larvae in blueberries presents 
a different matrix compared to most previous fruit and 
grain studies, requiring the assessment of optimal spectro
photometer specifications. Possible challenges include strong 
water absorbance at 1400–1600 nm which may overlap some 
infestation-specific absorbance in aqueous fruit samples 
compared to grains, variability due to the large genetic diver-
sity of wild blueberries and different stages of larva develop-
ment at the time of measurement. On the other hand, spectro
photometers with a wavelength range of up to only 1100 nm 
might not include sufficient wavelengths correlated to internal 
infestation in fruit.

The present study assessed the feasibility of detecting 
larvae in Maine wild blueberries (Vaccinium angustifolium) 
using one photo diode array (PDA) and two charge-coupled 
device (CCD) spectrophotometers, selected for their speed, 
robustness and the lack of moving parts. The specific objec-
tives of the study were: (1) to compare three commercially 
available NIR spectrophotometers based on their attributes, 
i.e. wavelength range and resolution, optical setup and signal-
to-noise ratio (S/N) with respect to their classification capacity 
of larvae infestation in individual blueberries for a potential 
in-process-line application; and (2) to assess the feasibility 
of using NIR spectra in partial least squares (PLS) models, 
after different spectral treatments, as a means for infestation 
classification of blueberries. We also present explanations of 
NIR wavelength bands likely to be related to larvae infestation 
in blueberries.

Materials and methods
Instruments
Three NIR systems were investigated: the low-cost, miniature 
system, Ocean Optics SD2000, the research grade Perten 
DA7000 and a custom-built NIR imaging spectrograph, Oriel 
MS-257. Their main technical differences included wavelength 
range, resolution and detector type. The technical specifica-
tions of these instruments are summarised in Table 1.

The SD2000 is a vis-NIR system from Ocean Optics with 
a silicon (Si) CCD detector and a factory installed longpass 
filter (OG590) blocking wavelengths < 590 nm. It utilises an L2 
lens and a 25 µm wide slit providing a nominal bandwidth of 
650–1100 nm. The useful wavelength range, excluding high 
noise bands, in this analysis was 650–1090 nm. The light 
source and collimating lens were positioned approximately 
40 mm from the sample and reflected light was collected at 
45° from the incident light via a single-strand optical fibre. The 
light source and the receiving fibre were mounted on a hemi-
spheric aluminium chamber, coated with non-reflective black 
paint, blocking ambient light during measurements.

The optics of the Perten DA7000 include a sensor module 
comprised of two PDA detectors, Si and indium–gallium–
arsenide (InGaAs), and a source module comprised of a 
tungsten halogen lamp, chopper and chopper motor which 
eliminate ambient light interference. The DA7000 operates 
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in dual beam, i.e. the reference energy from the source is 
constantly recorded along with the sample energy. However, 
a spectrum of Spectralon standard material (Labsphere, 
North Sutton, NH, USA) with > 99% diffuse reflectivity was 
also recorded to account for background effects resulting 
from optical windows and spectral attenuation in the refer-
ence fibre. A bifurcated fibre bundle, comprised of source and 
detector fibres integrated into one cylindrical probe (0° angle), 
was directed vertically downward and positioned approxi-
mately 10 mm above the sample.

The MS-257 from Oriel Instruments used a model SU-270D 
InGaAs CCD camera from Sensors Unlimited Inc. (Princeton, 
NJ, USA) with exposure time F = 16 ms and nominal resolution 
1.1 nm pixel–1. The light source was focused on the sample in 
down-view mode. Reflected light was collected by two optic 
fibres each mounted at a 45° angle from the direction of inci-
dent light and approximately 5 mm from the sample. The two 
fibres were 600 µm in diameter with a numerical aperture of 
0.22.

Spectrophotometer comparisons
As an estimate of signal-to-noise ratio, approximately 20 
spectra of reflectance standards were collected at near satu-
ration levels for each instrument. A Spectralon disc for the 
SD2000 and MS-257 and a Spectralon pill for the DA7000 
instruments were used. The average spectrum was divided 
by the standard deviation of the intensity counts at each 
wavelength.

Measured spectral wavelength resolution was varied by 
reducing the number of data points. The original number of 
points, 219, was consecutively reduced by factors of 2, 4 and 
8 in the DA7000 spectra. SD2000 spectra with 1505 original 

number of points were reduced by a factor of 7 to 215 points, for 
comparison with DA7000 models and by factors of 14 and 25.

Fruit and artificial infestation
Fresh stems with ripe Maine wild blueberries were collected 
during the harvest season and kept in vials with water in 
ovipostion cages with laboratory-raised blueberry maggot 
flies to induce artificial infestation. After one week, the stems 
were removed from the cage and were held for seven to ten 
days at 23–25°C to allow the fly larvae to mature to a typical 
size similar to field conditions. Blueberries were then sized 
using a sizing template. Subsets of blueberry samples were 
measured with each of the three NIR instruments recording 
absorbance spectra [log(1/R)]. This laboratory method devel-
oped by Drummond27 provided approximately 50% larvae 
infestation ratio in the final subsets.

Near infrared spectroscopy
The samples sets for the three instruments contained different 
numbers of fruit sample: 404 (SD2000), 553 (DA7000) and 
92 (MS-257). The number of samples in the MS-257 set was 
limited due to fewer infested fruit available at the time and 
fruit damage during the shipment process. All spectra were 
collected in diffuse reflectance mode with the blueberry stem 
end facing the light source. Three replicate spectra per blue-
berry, each an average of 32 scans, were collected with the 
SD2000 and then averaged. One spectrum from each fruit, an 
average of 15 scans, was recorded with the DA7000 spectro-
photometer. Two NIR images, one image from each fibre, for 
each fruit were recorded with the MS-257 system. The images 
were then processed and averaged resulting in one spectrum 
per fruit in the calibration model. After NIR measurements 

Property Instrument
SD2000 DA7000 MS-257

Manufacturer Ocean Optics, Inc., 
Dunedin, FL, USA

Perten Instruments, Springfield, 
IL, USA

Oriel Instruments, 
Stratford, CT, USA 

Detector type 
 
 

2048 pixel CCD silicon 
array detector 
 

76-pixel silicon diode array 
(400–950 nm) and 
76-pixel InGaAs diode array 
(950–1700 nm) 

InGaAs CCD camera 
320 × 240 pixels

Dispersive element Grating #14, 
600 lines mm–1

Stationary holographic grating Grating #3, 
600 lines mm–1

Wavelength range in the 
study (nm)

650–1100 600–1690 950–1390

Resolution (nm) 0.92 0.5 0.2
Light source 360–2000 nm tungsten 

halogen lamp
360–2000 nm tungsten 
halogen lamp

360–2000 nm tungsten 
halogen lamp

Angle between source and 
detector fibres (degrees)

45 0 45 

A/D convertor type 12-bit 12-bit 12-bit

Table 1. Basic technical characteristics of three commercially available spectrophotometers: the Ocean Optics SD2000, the Perten DA7000 
and the Oriel MS-257.
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were taken, all berries were dissected under a light micro-
scope to determine larvae presence.

Calibration models and data treatment
Absorbance spectra of individual fruit were imported into the 
GRAMS PLSPlus/IQ software (version 6.00, Thermo Galactic 
Industries Corporation, Salem, NH, USA). Partial least 
squares (PLS) regression models were built including the 
reference microscopic data. PLS was implemented in the form 
of discriminant PLS models using arbitrary categorical vari-
ables representing membership or non-membership of the 
infested fruit group rather than continuous analyte concen-
trations.28 Non-infested and infested blueberries were arbi-
trarily assigned a value of 1 and 2, respectively. Spectral data 
were regressed on the assigned reference values after mean 
centring and variance scaling. A blueberry was classified as 
infested if its predicted value was above 1.5 and classified as 
non-infested if the value was below 1.5.

Spectral pre-processing included multiplicative scatter 
correction (MSC) and first derivative using Savitzky–Golay 
derivation.28 The optimum number of PLS factors (inde-
pendent variables) was selected on the basis of minimised 
standard error of cross-validation (SECV), F-tests of the SECV 
and examining the regression coefficients plots. Outliers were 
identified by examining the raw spectra, actual vs predicted 
plots and spectral and concentration residuals plots in the 
PLSPlus/IQ software. Cross-validation was performed with 
random subsets of ten spectra (SD2000 and DA7000) and two 
spectra (MS-257) at each pass until all sample spectra had 
been included in calibration and validation sets. The accuracy 
of the models was evaluated by the percentage of correctly 
classified samples and SECV.

To establish statistical significance, PLS models with random 
subset cross-validation were repeated ten times for each type 
of pre-processing and instrument. Average percentages of 
correctly classified samples (prediction ratios) and SECV were 
reported for each model type. The prediction ratios and the 
SECV between the different instruments and pre-processing 
were compared statistically, based on the t-test with signifi-
cance level a = 0.05.

Results and discussion
Instrument signal-to-noise ratio
The maximum signal-to-noise (S/N) ratio was recorded for 
each instrument: 31,650 intensity (A/D) counts at 682 nm 
for DA7000, 80 counts at 1050 nm for SD2000 and 54 counts 
at 988 nm for MS-257 (Figure 1). The DA7000 S/N profile 
was noisier than the profiles of SD2000 and MS-257 but its 
maximum average S/N was two orders of magnitude higher at 
approximately 26,000 counts. The spectral shape of the noise 
for DA7000 and MS-257 generally followed that of the spectral 
signal (not shown), reflecting the importance of the signal 
shot noise.22 For the SD2000, the noise shape was different 
to the spectral shape (not shown) indicating more important 
electronics read-out noise.22 As expected, the PDA detector 
(DA7000) had a significantly higher S/N than the two CCD 
detectors (SD2000 and MS-257).

Walsh et al.22 estimated the S/N of three systems by dividing 
the mean of 50 spectra by the standard deviation for each 
wavelength at near saturation levels. Their reported S/N were 
40,000, 1000 and 4000 for the PDA and two CCD units, respec-
tively. The S/N for their PDA unit was slightly higher than the 
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31. C. E. Miller, “Chemical Principles of Near-Infrared Technology”, in Near-Infrared Technology in the 
Agricultural and Food Industries, Second Edition, Ed. by P. Williams and K. Norris. American Association of 
Cereal Chemists, Inc., St. Paul, p.33-36 (2001). 
32. C. Ridgway, J. Chambers and I. A. Cowe, “Detection of grain weevils inside single wheat kernels by a 
very near infrared two-wavelength model”, J. of Near Infrared Spectrosc., 7, 213 (1999). 
33. R. A. I. Drew, “Amino acid increases in fruit infested by fruit flies of the family Tephritidae”, Zool. J. 
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 Figure 1. Signal to standard error ratio of spectra collected with the Ocean Optics SD2000, Perten 

DA7000 and Oriel MS-257 spectrophotometers. 

Figure 1. Signal to standard error ratio of spectra collected with the Ocean Optics SD2000, Perten DA7000 and Oriel MS-257 spectro-
photometers.
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S/N value for the DA7000 and can be attributed to the smaller 
number of spectra (28) used in our calculations. The differ-
ences in S/N of the CCD units are difficult to explain without 
considering factors such as detector electronics, light source 
and number of spectra. Overall, in both studies, the PDA units 
showed considerably higher S/N than the CCD units.

Calibration models and infestation prediction 
capacity
The results of the PLS discriminant models are summarised 
in Table 2. Superscript letters (a, b, c etc.) indicate statistically 
significant differences between models based on instrument 
and pre-processing type (a = 0.05).

When comparing PLS models with no pre-processing, the 
Perten DA7000 demonstrated the highest prediction ratio of 
81%, followed by the Ocean Optics SD2000 with 75.6% and the 
Oriel MS-257 with 58.9% (Table 2). PLS models with applied 
MSC from the DA7000 and the SD2000 instruments yielded 
results which were not significantly different at (a = 0.05), while 
the MS-257 model was inferior. Prediction results after 1st 
derivative were significantly better in the DA7000 models, no 
difference in the SD2000 models and lower in the MS-257 
models. Overall, the DA7000 models were most accurate, 
followed by the SD2000 and MS-257 models. The inferior 
MS-257 models were likely to be due to observed higher noise 
in the sample spectra and the small number of samples used 
in the calibrations.

Comparison of pre-processing methods showed that MSC 
led to slight model improvement for the SD2000 and first 
derivative led to slight improvement in the DA7000 models. 
This is likely to be due to the fact that the 45° angle optical 
configuration in the SD2000 configuration is more prone to 
light scatter and MSC corrects some of the scatter effects in 
the spectra. In contrast, the first derivative removes spectral 
baseline effects and corrects for baseline shifts due to the 
variation in fruit size in the 0° angle optical configuration of 
the DA7000. Pre-processing had no effect on accuracy for 
the MS-257 models. In general, pre-processing led to predic-
tion differences of 0% to 2.2%, which might be considered 

insignificant in an industrial application. These results are 
similar to the findings of other authors who observed that 
spectral pre-processing had some effect on PLS predictions, 
but statistical significance was often not established.20,29

The models with no pre-processing for SD2000 and DA7000 
were repeated after reducing the number of spectral points 
and for different wavelength ranges to study the effects of 
spectral resolution and wavelength range on model accu-
racy (Table 3). Model accuracy was almost not affected by 
reduced resolution for the DA7000 and slightly affected for 
the SD2000 models after reducing the number of points to 
61. Thus, resolution seemed to have a minimal contribution 
to model accuracy and indicated that reducing the number 
of wavelength points can potentially be used to improve the 
speed of an on-line system. Comparing the models with the 
same wavelength ranges from SD2000 and DA7000 showed 
similar accuracy for the 650–1050 nm. DA7000 performed 
slightly better than SD2000 at the 650–850 nm range and better 
in the 850–1050 nm range likely due to the less noisy InGaAs 
than the Si detector in the longer range. These results also 
indicated that both the 45° and the 0° scanning configurations 
provided equivalent performance over the same wavelength 
range. DA7000 models in the 950–1390 nm and 1390–1690 nm 
range were as accurate as full wavelength models suggesting 
that wavelengths longer than 950 nm provide more infesta-
tion related information. Overall, both the Si and the InGaAs 
detector seemed to provide similar prediction accuracy at 
their respective wavelength ranges.

The reported infestation prediction ratios in this study are 
slightly lower than some reports on infestation prediction in 
wheat kernels.17,18 However, the difficulty in such comparisons 
stems from the fact that there are no other blueberry infesta-
tion studies and blueberries present a different matrix than 
kernels. Larvae infestation is also expected to have a different 
effect on the fruit chemical and physical properties. Larva 
feeding inside the fruit disrupts the internal matrix which 
affects fruit shape and firmness. Due to the high water content 
in blueberries of 85–87%30 compared to 10–13% in wheat, 
there is a likely overlap of infestation related wavelength bands 

Instrument Ocean Optics SD2000 Perten DA7000 Oriel MS-257
Total number of spectra 
(non-infested, infested)

404 
(233, 171)

553 
(398, 155)

92 
(34, 58)

Pre-processing None MSC SG1 None MSC SG1 None MSC SG1
Number of PLS factors 9 7 5 9 9 6 5 5 5
Total correct prediction 
(%)

75.6a  76.9b 76.3ab 

 
81.0c 77.8db 82.0e 58.9f 58.0f 47.5g 

SECV 0.42 0.42 0.41 0.41 0.42 0.39 0.53 0.52 0.60
SECV: standard error of cross-validation; None: no pre-processing; MSC: multiplicative scatter correction; SG1: Savitzky–Golay first derivative

Table 2. PLS infestation prediction results from the Ocean Optics SD2000, Perten DA7000 and Oriel MS-257 instruments. The superscript 
letters (a, b, c, d, e, f and g) indicate statistically different prediction levels (a = 0.05).
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with the strong water absorption bands around 1450 nm. High 
moisture is known to dramatically reduce prediction accuracy 
if the calibration model is detecting infestations based on the 
high moisture content of the larvae.17 In addition, the high 
genetic diversity in wild blueberries compared to cultivated 
fruit or grains, variation in larvae maturity and larvae loca-

tion inside the blueberry introduce additional variability in the 
spectral data possibly reducing prediction accuracy.

Wavelength regions
Plots of PLS factor weights indicating absorbance bands 
contributing to prediction for SD2000 and DA7000 models 

Instrument Wavelength 
range (nm)

Wavelength 
points

Number of PLS 
factors

Total correct 
prediction (%)

SECV 

Ocean Optics SD2000 
 
 
 
 

  650–1100 1505   9 77.9 0.42
  650–1100   215   9 76.9 0.42
  650–1100   108   9 77.4 0.41
  650–1100     61   9 75.4 0.42

       650–850     96 10 71.9 0.45
  850–1050     96   9 72.9 0.43

Perten DA7000 
 
 
 
 
 
 
 
 

  600–1690   219   8 80.1 0.41
  600–1690   110   8 79.9 0.41
  600–1690     55   8 79.9 0.41
  600–1690     28   8 79.8 0.41
  650–1050     81 11 77.4 0.40

       650–850     41   8 76.7 0.40
  850–1050     41   9 79.0 0.41
  950–1390     89   8 81.7 0.39
1390–1690     61   6 80.3 0.40

SECV: standard error of cross-validation

Table 3. Effects of wavelength range and resolution on PLS prediction results for the Ocean Optics SD2000 and the Perten DA7000. Model 
parameters and data sets were identical to the models without pre-processing in Table 2.
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Figure 2. Factor weights with 4 factors of PLS regression models from the Ocean Optics SD2000 
spectrophotometer indicating wavelengths correlated to infestation prediction in blueberries. 

Figure 2. Factor weights with four factors of PLS regression models from the Ocean Optics SD2000 spectrophotometer indicating 
wavelengths correlated to infestation prediction in blueberries.
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are presented in Figure 2 and Figure 3, respectively. Factor 
weights for the MS-257 models were not considered here 
because of their poor prediction as previously established. The 
first four factors explain approximately 99% of the spectral 
variation (data not shown), where the 1st factors explained 
from 74% to 77% of the spectral variation.

The first two (1st and 2nd) and the second two (3rd and 4th) 
factors can be grouped in pairs due to similar shape and likely 
similar chemical origin (Figures 2 and 3). The most impor-
tant peaks in the factor weights are summarised in Table 4. 
The 650–750 nm absorption bands in both instruments indi-
cated the importance of colour carried in blueberries mainly 
by anthocyanins and chlorophyll. Other important bands in 
the SD2000 models (Figure 2) include 800 nm and 920 nm 
assigned to –CH third overtone and 980 nm assigned to –OH 
second overtone.31 These absorption bands are assigned to 
mono- and poly-carbohydrates (fructose, glucose, pectin) 

and water in blueberries.13 The 982 nm band has also been 
identified as a key for infestation detection in wheat.32

For the DA7000 instrument, the factor weight profiles in 
Figure 3 (850–920 nm, 1080 nm, 1160nm and 1335 nm) corre-
spond closely to the first, second and third overtones of –CH, 

–OH and –NH assigned to carbohydrates, water and peptides.17 
The 1420–1480 nm region coincides with the absorption bands 
of water and peptide bonds. Although increased amino acid 
concentrations in fruit have been linked to infestation,33 water 
is the most likely absorber. The 1700 nm bands have also been 
attributed to chitin in the insect cuticle (CH or CH2 groups).15 
The 1140–1370 nm and 1550–1700 nm absorbance bands have 
been related to infestation in grains and seeds.17,19

Interestingly, the first two weight profiles (1st and 2nd) were 
analogous to a NIR spectrum of a live larva (Figure 4) and the 
second two profiles (3rd and 4th) to the difference between aver-
aged larva and non-infested blueberry spectra. This suggests 
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Figure 3. Factor weights with 4 factors of PLS regression models from the Perten DA7000 
spectrophotometer indicating wavelengths correlated to infestation prediction in blueberries. 

Figure 3. Factor weights with four factors of PLS regression models from the Perten DA7000 spectrophotometer indicating wave-
lengths correlated to infestation prediction in blueberries.

Peak and valley positions in factor weights ± width (nm)
Factor 

number
Ocean Optics SD2000 Perten DA7000 

1 677 ± 11, 790 ± 60 600–1370, 1500–1700
2 678 ± 29, 787 ± 36, 1018 ± 83 698 ± 40, 900–1350, 1400–1700
3 650 ± 13, 714 ± 22, 800 ± 20, 912 ± 25, 980 ± 20 609 ± 85, 843 ± 76, 1079 ± 46, 1160 ± 20, 1337 ± 40, 1395 ± 10, 

1454 ± 30, 1568 ± 40
4 654 ± 36, 788 ± 30, 911 ± 30, 980 ± 5, 1030 ± 29 650 ± 45, 797 ± 110, 1165 ± 35, 1335 ± 45, 1409 ± 20, 1652 ± 60

Table 4. Summary of important absorption bands in SD2000 and DA7000 spectra identified by PLS factor weights (Figures 2 and 3). Peak or 
valley width was measured at half height from zero line.
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that the origin of the NIR signal is from the larva and the asso-
ciated chemical changes in the blueberries.

These results and the results from wavelength range 
comparisons suggest that the wider wavelength range of the 
DA7000 instrument provides a prediction advantage resulting 
in slightly better PLS models than the SD2000 instrument.

Conclusions
This study showed that NIR spectroscopy is a feasible tech-
nique for rapid classification of insect infested fruit consid-
ering that the conventional methods for blueberry infesta-
tion detection are slow, destructive and use a small number 
of random samples. In general, the Perten DA7000 and the 
Ocean Optics SD2000 instruments were suitable for infesta-
tion prediction in wild blueberries. The PLS models from the 
Oriel MS-257 instrument were inferior which was likely due 
to the small number of samples and higher spectral noise. 
The DA7000 had the highest S/N and provided the highest 
infestation prediction ratio. However, the SD2000 PLS models 
were only 3–6% less accurate despite lower S/N and shorter 
wavelength range. Thus, the Ocean Optics SD2000 can be a 
viable alternative in applications requiring high portability and 
low cost. However, further optimisation of the PLS prediction 
models and validation with fruit from different seasons and 
field origin are required before this technique is adopted in 
routine analysis. Estimation of detection limits measured by 
larvae size should also be incorporated in future studies.
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