CLASSIFICATION OF DAMAGED SOYBEAN SEEDS
USING NEAR—INFRARED SPECTROSCOPY
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ABSTRACT. Damage is an important quality factor for grading, marketing, and end use of soybean. Seed damage can be caused
by weather, fungi, insects, artificial drying, and by mechanical damage during harvest, transportation, storage, and handling.
The current visual method for identifying damaged soybean seeds is based on discoloration and is subjective. The objective
of this research was to classify sound and damaged soybean seeds and discriminate among various types of damage using
NIR spectroscopy. A diode—array NIR spectrometer, which measured reflectance spectra (log[1/R]) from 400 to 1,700 nm,
was used to collect single—seed spectra. Partial least square (PLS) models and neural network models were developed to
classify sound and damaged seeds. For PLS models, the NIR wavelength region of 490 to 1,690 nm provided the highest
classification accuracy for both cross—validation of the calibration sample set and prediction of the validation sample set.
Classification accuracy of sound and damaged soybean seeds was higher than 99% when using a two—class model. The
classification accuracies of sound seeds and those damaged by weather, frost, sprout, heat, and mold were 90%, 61%, 72%,
54%, 84%, and 86%, respectively, when using a six—class model. Neural network models yielded higher classification
accuracy than PLS models. The classification accuracies of the validation sample set were 100%, 98%, 97%, 64%, 97%, and
83% for sound seeds and those damaged by weather, frost, sprout, heat, and mold, respectively, for the neural network model.

The optimum parameters of the neural network model were learning rate of 0.7 and momentum of 0.6.
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oybean is one of the major oil seed crops in the U.S.,

especially in the Midwest. U.S. farmers produce

more than 60% of the world’s total soybean

production (Soyatech, 2001). More than one—third
of U.S. soybean production is exported to foreign markets.
The production and marketing of soybean are major
components of the U.S. agricultural economy. Assessment of
soybean quality is an important task for government
agencies, such as the Grain Inspection, Packers, and
Stockyard Administration (GIPSA), local elevators, and
soybean industries.

The U.S. standard used to evaluate soybean quality is
based on test weight, damaged kernels, foreign materials, and
discolored kernels (USDA, 1994). The maximum limits for
damaged soybeans are >1%, 2%, 5%, and 10% for U.S.
Grade No. 1, 2, 3, and 4, respectively. The maximum limits
on damaged soybean seeds are very restricted, especially for
U.S. Grade No. 1 and 2 soybeans. Currently, GIPSA and local
elevators visually determine damaged soybean seeds from
sound seeds based on inspection of physical quality attrib-
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utes, such as color, shape, and size. Although reference slides
are available to assist inspectors in making classification
judgments, distinguishing damaged seeds from sound seeds
is still subjective. The variability caused by this subjectivity
is difficult to document, but it may affect grade and market
value of soybeans. In addition, the various types of damage
have different effects on soybean seed quality and end use.
Correct classification of damage type can provide useful
information for the end use of the soybeans and can therefore
benefit both soybean producers and industries. Grading
requires repetition, adaptability, and objectivity, which for
human inspectors may change over a long period of grading.
Thus, an objective grading system is needed to improve
marketing accuracy.

Currently, the methods most studied for objective classifi-
cation of sound and damaged soybean seeds are based on
machine vision, limited to a few damage categories, and
restricted to classifying sound or fungal-damaged soybean
seeds. Machine vision is the application of electronic
imaging to enable the visual inspection of an object or a scene
(Paulsen, 1990). Wigger et al. (1988) developed a color
image processing system to classify soybean seeds into
healthy and symptomatic seeds, focusing on fungal-dam-
aged seeds. The fungal-damaged seeds were correctly
determined in 77% to 91% of the soybean seeds tested.
Casady et al. (1992) developed an image pattern classifica-
tion program to discriminate healthy seeds and fungal-dam-
aged seeds, with average classification accuracy of 77% to
91%. Ahmad et al. (1999) used a color classifier for
classifying fungal-damaged soybean seeds. The color analy-
sis showed differences between the asymptomatic and
symptomatic seeds. However, color alone did not adequately
describe some differences among symptoms. The average
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classification accuracy was 88% for the asymptomatic and
symptomatic seeds. The classification accuracies for Pho-
mopsis lonicolla, Alternaria, Fusarium graminearum, and
Cercospora kikuchii were 45%, 30%, 62%, and 83%,
respectively. Shatadal and Tan (1998) developed a four—class
neural network model based on color image analysis for
classification of sound, heat—-damaged, frost—-damaged, and
stinkbug—damaged soybean seeds. The classification accura-
cies were 99.6%, 95%, 90%, and 50.6% for sound, heat—-dam-
aged, frost—-damaged, and stinkbug—damaged soybean seeds,
respectively.

Image analysis can provide a means of extracting useful
information from an image for quality measurement of grains
and oil seeds. However, machine vision cannot provide
specific information related to chemical composition be-
cause machine vision is limited to the visible region of the
spectrum. Near—infrared (NIR) spectroscopy can be used for
measurement of both physical and chemical properties.
Therefore, NIR spectroscopy may increase the classification
accuracy of sound and damaged soybean seeds. The objec-
tive of this research was to classify sound and damaged
soybean seeds and discriminate among various types of
damage using NIR spectroscopy.

MATERIALS AND METHODS
MATERIALS

Market—channel soybean samples (not variety specific)
were obtained from the GIPSA Federal Grain Inspection
Service (FGIS) and the Department of Agronomy, Kansas
State University. Sound and damaged seeds were manually
classified by experienced grain inspectors. Seeds of six
categories (sound, weather—damaged, frost—-damaged,
sprout—damaged, heat—-damaged, and mold—damaged) were
used for this study. Characteristics of each category and the
number of seeds used for this study are listed in table 1.

KERNEL COLOR MEASUREMENT

Reflectance spectra from 490 to 750 nm were transferred
into L*a*b* color space using Grams/32 (Galactic Industries,
Salem, N.H.) software and were used for soybean seed color
determination. In the L*a*b* color space, L* varies from 0
(black) to 100 (perfect white); a* ranges from —100 to 100
and measures green when negative and red when positive;
and b* varies from —100 to 100 and is a measure of blue when
negative and yellow when positive.

Table 1. Characteristics of sound and damaged soybean samples
and the number of soybean seeds used for classification
of sound and damaged soybeans.

No. of
Type of Damage Seeds  Descriptions of Damage
Sound seeds 700  Soybeans with natural yellowish color.
Weather—damaged 200  Soybeans with discolored seed coat.
Frost—damaged 200  Soybeans are discolored green in cross—
section.
Heat—damaged 200  Soybeans are materially discolored and
damaged by heat.
Sprout—damaged 100 Soybeans are immature and have a thin,
flat, and wrinkled appearance.
Surface mold damage 200  Soybeans with milky white or grayish

(downy mildew) crusty growth.
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NIR SPECTRA COLLECTION

A diode—array NIR spectrometer (DA7000, Perten Instru-
ments, Springfield, IIl.) was used to collect single seed
spectra. The spectrometer measures reflectance from 400 to
1700 nm using an array of silicon sensors for spectrum region
from 400 to 950 nm at 7-nm bandwidth and indium—gallium
arsenide sensors for spectrum region from 950 to 1700 nm at
11-nm bandwidth. All data is then interpolated to 5—nm
intervals. The diode—array NIR spectrometer collected
spectra at a rate of 30/s. Single soybean seeds were placed in
a black V-shaped trough (12 mm long, 10 mm wide, and
5 mm deep) and illuminated with halogen light via a fiber
bundle (8 mm diameter) positioned 13 mm from the top of the
trough and oriented 45° from vertical. A 2-mm reflectance
probe, oriented vertically 9.5 mm from the top of the trough,
carried the reflected energy to a spectrometer. The proce-
dures included collecting a baseline, collecting eight spectra
from each seed, and averaging the eight spectra for each seed.
A total of 700 sound seeds and a total of 900 seeds damaged
by weather, frost, sprout, heat, or mold were measured. A
spectrum of the empty trough was measured as a reference
before seed measurement, and again after every 100 seeds.

PARTIAL LEAST SQUARES

Partial least squares (PLS) software (Galactic Industries,
Salem, N.H.) was used to develop two—class and six—class
models for classification of sound and damaged soybean
seeds. PLS is a multivariate data analysis technique designed
to handle intercorrelated regressors. For two—classification
models, soybean seeds first were separated equally into
calibration and validation sets, based on even and odd
numbers. Sound and damaged seeds were assigned constant
values of 1.0 and 2.0, respectively. A seed was considered to
be correctly categorized if the predicted value lay on the same
side of the midpoint of the assigned values. For six—class
models, sound seeds and weather, frost, sprout, heat, and
mold damaged seeds were assigned constant values of 1.0,
2.0, 3.0, 4.0, 5.0, and 6.0, respectively.The model perfor-
mance is reported as the cross—validation of each calibration
sample set and prediction of validation sample sets. The
number of PLS factors used was the minimum required to
give the best classification results.

NEURAL NETWORKS

The NeuralWorks Professional 1I/Plus software package
(NeuralWare, Inc., Pittsburgh, Pa.) was used to develop
neural network models for classification of sound and
damaged soybean seeds based on back—propagation net-
works. Back—propagation uses a learning process to mini-
mize the global error of the system by modifying node
weights. The weight increment or decrement is achieved by
using the gradient descent rule. The network is trained by
initially selecting the weights at random and then presenting
all training data repeatedly. The weights are adjusted after
every trial using external information specifying the correct
result until the weights converge and the errors are reduced
to acceptable values. A complete discussion of back—propa-
gation network theory is given by Hecht—Nielsen (1989).
Visible (490-750 nm), NIR (750-1690 nm), and full
wavelength (490-1690 nm) regions were used as neural
network inputs. For each classification experiment, two types
of neural networks (with and without a hidden layer) were
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Table 2. Classification accuracy (%) of sound and damaged soybean seeds using two—class partial least squares (PLS) models.

Calibration Results[2]

Validation Results[?]

Spectral Region Flel Sound Damaged Average Sound Damaged Average
490-750 nm 6 98.8 98.4 98.6 98.2 97.8 98.0
750-1690 nm 10 100 100 100 99.7 99.7 99.7
490-1690 nm 10 99.7 99.3 99.5 99.7 99.6 99.6

[a] Total number of soybean seeds in the calibration sample set = 800.
[°] Total number of soybean seeds in the validation sample set = 800.
[e] F = number of PLS regression factors.

tested. Six—class neural network models were developed.
The network with the highest validation accuracy was
recorded as the best model.

RESULTS AND DISCUSSION
CLASSIFICATION OF SOUND AND DAMAGED SOYBEANS USING
PLS

Classification results of cross—validation of the calibra-
tion sample sets and prediction of the validation sample sets
using two—class PLS models are summarized in table 2. The
NIR wavelength region of 750-1690 nm and visible/NIR
region of 490-1690 nm gave the highest percentage of
correct classification for both cross—validation and predic-
tion (>99.5%). The use of the visible wavelength region
alone resulted in the poorest classification performance.
Sound seeds and damaged seeds have both different physical
properties and different chemical compositions. The use of
the NIR region appears to have added important information.
Sound soybean seeds are usually a natural yellowish color
with an intact seed coat. In contrast, damaged soybean seeds
are usually discolored and have fissures in the seed coat,
resulting in wrinkled, cracked, and crusty seed coats with less
roundness. Heat damage can cause discoloration and can also
cause protein denaturation. Figure 1 shows the average
spectra of sound and damaged soybean seeds. When
compared to sound soybean seeds, the energy absorption of
damaged soybean seeds was higher in the visible region and
lower in the NIR region. The differences in energy absorption
indicate differences in color and chemical composition
between damaged and sound soybean seeds. The greater
energy absorption of damaged soybean seeds in the visible
region indicates that the color of damaged soybean seeds was
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Figure 1. NIR absorption curves for sound and damaged soybean seeds.
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darker than sound soybean seeds. This result was expected
because damaged seeds were usually accompanied by
discoloration.

The color differences between damaged and sound seeds
were further shown by L, a, and b values (table 3). In general,
sound soybean seeds had higher average L, a, and b values
than damaged soybean seeds. This response indicates that
damaged soybean seeds are darker and more yellow than
sound soybean seeds. However, there were no significant
differences in L and b values between sound seeds and
heat—-damaged and sprout-damaged soybean seeds. Hence,
there was very little discrimination information in the visible
region of 490-750 nm, which resulted in relatively poor
classification performance.

The peaks and valleys of the beta coefficients curve from
the PLS models show the significant differences in energy
absorption between the sound and damaged soybean seeds
(fig. 2). The peaks around 515, 580, 640, 690, and 725 nm are
related to color difference between sound and damaged
soybean seeds. The peaks around 970 and 1515 nm are
related to NH bonds, representing protein content (Shenk et
al., 2001), and the peaks around 1215, 1345, and 1600 nm are
related to CH bonds, representing fiber content (Barton and
Burdick, 1979; Shenk et al., 2001). The damaged soybean
seeds may have less protein and fiber contents than sound
soybean seeds because damaged soybean seeds have less
weight than sound soybean seeds (Mbuvi et al., 1989;
Sinclair, 1995). The peak around 1410 nm is related to OH
bonds, representing oil content (Shenk et al., 2001). Some
peaks and valleys in the beta coefficient curve may represent
interactions of moisture, starch, protein, oil, and cellulose
caused by damage to the seeds.

Table 4 shows classification results of cross—validation of
the calibration sample sets and prediction of the validation
sample sets using six—class PLS models. Classification
accuracy of cross—validation and the prediction of the
validation sample sets were similar. The classification model

Table 3. The color variations between sound and damaged soybean
seeds measured as L, a, and b values in the L*a*b* color space.

Classification L a b
Sound soybean 36.01 alal 6.89 ¢ 9.52a
Damaged soybean
Weather—damaged 26.30 ¢ 5.77d 6.40 b
Frost-damaged 33.44 ab 326f 5.65b
Sprout—damaged 33.59a 9.15a 8.93a
Heat—damaged 33.74 a 7.82b 9.08 a
Mold-damaged 30.58 b 499e 5.88b
Average 31.54 6.20 7.19
LSD 2.87 0.71 0.95

[a] Values within the same column followed by different letters are signifi-
cantly different at P < 0.05.
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Figure 2. Beta coefficients curve of PLS model (10 PLS factors) for classi-
fication of sound and damaged soybean seeds.

using the full wavelength region (490-1690 nm) yielded the
highest average classification accuracy for both calibration
and validation sample sets (>74.5%). Classification accura-
cies were 90.2%, 61%, 72%, 54%, 84%, and 86%, corre-
sponding to sound seeds and seeds damaged by weather,
frost, sprout, heat, and mold, respectively. The visible
(490-750 nm) and NIR (750-1690 nm) wavelength regions
alone gave lower classification accuracies. Hence, each
wavelength region contained valuable information repre-
senting the physical or chemical properties of the soybean
seeds. The classification accuracy may indicate a non—linear
relationship among the different types of damage. Sprout—
damaged soybean seeds were the most difficult to classify
(table 4). This result was probably because sprout—damaged
soybean seeds had a color similar to sound and heat—damaged
seeds.

CLASSIFICATION OF SOUND AND DAMAGED SOYBEANS USING
NEURAL NETWORKS

Neural network classification models were developed
using three wavelength regions: 490-750 nm with 53 input
nodes, 750-1690 nm with 189 input nodes, and 490-1690 nm
with 241 input nodes. Spectral data below 490 nm and above
1690 nm were discarded because of the noise in the signal.
Six output nodes were used to classify soybean samples into
six categories. The delta rule was used as the learning rule,
which specifies how connection weights are changed during

the learning process. The sigmoid transfer function was
chosen for the non—linear function that transfers the internal-
ly generated sum for each node to a potential output node.

Previous research showed no benefit from using more than
one hidden layer (Bochereau et al., 1992; Dowell, 1994;
Wang et al., 1999). Thus, only the differences between one
hidden layer and no hidden layer were compared. The
number of nodes in the hidden layer was varied among 0, 3,
6, and 25. For each of these, 150,000 learning cycles
(1875 cycles/spectrum), momentum of 0.4, and learning rate
of 0.5 were used for this comparison. Adding a hidden layer
decreased classification accuracy for both the calibration and
validation sample sets (table 5). Adding a hidden layer also
strongly affected classification of sprout—-damage and mold—
damaged categories. Increasing the number of nodes in the
hidden layer from 3 to 25 increased the overall classification
accuracy and the average accuracy for mold—damaged seeds,
but the classification of sprout—damaged seeds was still poor.
The best classification was obtained by using a neural
network model without hidden layers. Thus, only the neural
network models without the hidden layer will be discussed
further.

The major parameters that affect the classification and
training speed of the neural networks are the number of
learning cycles (also called events), learning rate (1), and
momentum (o). Neural network models with a wavelength
region of 490-1690 nm and optimum learning cycles of
150,000 were used to find the optimum learning rate and
momentum. Table 6 shows the effect of learning rate and
momentum on average classification accuracy of the calibra-
tion and validation sample sets. The results show that when
the momentum was kept constant, the highest learning rate
resulted in the highest classification accuracy. Learning rate
determines how much of the error to propagate back into the
preceding nodes, and it affects the speed of convergence of
the network. High learning rates may need fewer learning
cycles to achieve the required error level and thus use less
training time. The classification accuracy increased as
momentum and learning rate increased. At a constant
learning rate, a momentum of 0.6 yielded the highest
classification accuracy. Likewise, at constant momentum, a
learning rate of 0.7 gave the best classification results.
Therefore, a momentum of 0.6 and learning rate of 0.7 were
used for network training.

The performance of neural network models for three
different wavelength regions (490-750, 750-1690, and

Table 4. Classification accuracy of sound and damaged soybean seeds using six—class partial least squares (PLS) models.2!

Classification Accuracy (%)

Weather Frost Sprout Heat Mold
Sample Sets Sound Damaged Damaged Damaged Damaged Damaged Average
Calibration setlb]
490-750 nm 85.0 64.0 53.0 80.0 88.0 68.0 70.0
490-1690 nm 88.0 62.0 72.0 56.0 86.0 87.0 75.2
750-1690 nm 70.5 57.0 60.0 50.0 77.0 80.0 65.8
Validation set(c]
490-750 nm 86.5 67.0 45.0 76.0 84.0 77.0 72.5
490-1690 nm 90.2 61.0 72.0 54.0 84.0 86.0 74.5
750-1690 nm 70.2 79.0 71.0 40.0 55.0 81.0 66.0

(2] Number of PLS regression factors = 10.
[Pl Total number of soybean seeds in the calibration sample set = 650.
[c] Total number of soybean seeds in the validation sample set = 800.
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Table 5. Effect of number of hidden layer nodes on classification accuracy of sound
and damaged soybean seeds using six—class neural network models.[a!

Classification Accuracy (%)

No. of Hidden Weather Frost Sprout Heat Mold
Layer Nodes Sound Damaged Damaged Damaged Damaged Damaged Average
Calibration setlb]
0 99.7 97.0 96.0 66.0 94.0 80.0 88.8
3 99.7 100 99.0 0 0 5.0 50.6
6 99.7 96.0 93.0 0 95.0 69.0 75.5
25 99.4 97.0 92.0 10.0 95.0 90.0 80.6
Validation setlc]
0 100 98.0 95.0 54.0 94.0 57.0 83.0
3 100 99.0 96.0 0 7.0 6.0 51.3
6 100 96.0 91.0 0 92.0 63.0 73.7
25 99.7 93.0 92.0 6.0 95.0 87.0 78.8
[a] Parameters used: wavelength range = 490-1690 nm; momentum = 0.4; learning rate = 0.5; and learning cycles = 150,000.
[°] Total number of soybean seeds in the calibration sample set = 800.
[c] Total number of soybean seeds in the validation sample set = 800.
Table 6. Effect of learning rate and momentum on average classification accuracy of calibration
and validation sample sets using six—class neural network models.!2!
Classification Accuracy (%)
Learning Weather Frost Sprout Heat Mold
Momentum Rate Sound Damaged Damaged Damaged Damaged Damaged Average
0.4 0.5 100 97.5 95.5 60.0 94.0 68.5 85.9
0.4 0.6 100 98.0 95.5 62.0 94.5 72.5 87.1
0.4 0.7 100 98.0 97.0 69.0 96.0 78.0 89.7
0.5 0.5 100 97.5 95.5 62.0 94.0 66.5 85.9
0.5 0.6 100 98.0 96.5 66.0 94.5 76.0 88.5
0.5 0.7 100 97.5 97.5 73.0 97.0 83.5 91.4
0.6 0.5 100 98.0 95.5 60.0 94.5 73.0 86.8
0.6 0.6 100 98.0 97.0 67.0 95.0 79.0 89.3
0.6 0.7 100 97.5 98.0 74.0 97.0 85.0 91.9

[a] Parameters used: wavelength range = 490-1690 nm; learning cycles = 150,000; total number of soybean seeds in the calibration and validation sample sets

= 800 in each set.

Table 7. Effect of wavelength region on classification accuracy of sound and damaged soybean seeds using six—class neural network models.!2!

Classification Accuracy (%)

Weather Frost Sprout Heat Mold
Sample Sets Sound Damaged Damaged Damaged Damaged Damaged Average
Calibration setlb]
490-750 nm 99.0 91.0 94.0 6.0 75.0 69.0 72.3
490-1700 nm 100 98.0 98.0 82.0 96.0 84.0 93.0
750-1690 nm 100 93.0 44.0 34.0 95.0 49.0 69.2
Validation set(c]
490-750 nm 99.4 86.0 91.0 0 60.0 64.0 66.7
490-1690 nm 100 98.0 97.0 64.0 97.0 83.0 89.8
750-1690 nm 100 93.0 35.0 34.0 97.0 43.0 67.0
PLS 490-1690 nm 90.2 61.0 72.0 54.0 84.0 86.0 74.5

[a] Parameters used: wavelength range = 490-1690 nm; momentum = 0.6; learning rate = 0.7; and learning cycles = 150,000.

[°] Total number of soybean seeds in the calibration sample set = 800.
[c] Total number of soybean seeds in the validation sample set = 800.

490-1690 nm) is summarized in table 7. In general,
classification accuracy for the calibration sample sets was
higher than for the validation sample sets. The neural
network using the 490-1690 nm wavelength region yielded
the highest classification accuracy. More than 90% of sound,
weather—damaged, frost—-damaged, and heat-damaged soy-
bean seeds were correctly classified for the calibration and
validation sample sets, respectively. Sprout—-damaged and
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mold—damaged seeds were the most difficult to classify.
However, 74% and 85% of sprout—damaged and mold—dam-
aged soybeans were correctly classified when the 490-—
1690 nm wavelength region was used in the neural network
model. Combining the effects of learning rate, momentum,
learning cycles, and wavelength region on neural network
performance, the optimum parameters of the neural network
model were momentum = 0.6, learning rate = 0.7, learning
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Table 8. Calibration and validation results using optimum six—class neural network models
for classification of sound and damaged soybean seeds (490-1690 nm).

Classification Accuracy (%)

Weather Frost Sprout Heat Mold
Type of Damage Sample Setl?] Sound Damaged Damaged Damaged Damaged Damaged
Sound Calibration 99.7 — — — — 0.3
Validation 100 — — — — —
Weather damaged Calibration 0 97.0 1.0 2.0 — —
Validation — 98.0 2.0 — — —
Frost damaged Calibration 1.0 — 99.0 — — —
Validation 2.0 — 97.0 1.0 — —
Sprout damaged Calibration 4.0 8.0 — 84.0 2.0 2.0
Validation 14.0 10.0 — 64.0 6.0 6.0
Heat damaged Calibration — 2.0 — 1.0 97.0 —
Validation — 2.0 — 1.0 97.0 —
Mold damaged Calibration 10.0 — 2.0 — 1.0 87.0
Validation 13.0 — 4.0 — — 83.0

[a] Total number of soybean seeds in the calibration and validation sample sets = 800 in each set.

cycles = 150,000, and wavelength region = 490-1690 nm
with no hidden layer.

Table 8 shows the performance of the optimum neural
network model on the validation sample set corresponding to
six different seed categories. The classification accuracies of
sound, weather—damaged, frost-damaged, and heat—dam-
aged soybean seeds were higher than 97.0%. Sound soybean
seeds had 100% classification accuracy. The sprout—dam-
aged soybean seeds were the most difficult to classify (64%).
About 36% of sprout—damaged soybean seeds were random-
ly misclassified into sound, weather—damaged, heat—dam-
aged, and mold—damaged soybean -categories. Mold—
damaged soybean seeds were the second most difficult to
classify. About 17% of mold—damaged soybean seeds were
misclassified as sound or frost—-damaged soybean seeds.

CONCLUSIONS

Sound and damaged soybean seeds can be easily classified
using PLS models. The highest classification accuracy was
more than 99.5% when either the wavelength regions of
750-1690 or 490-1690 nm were used under a two—class
model. The classification of six categories of sound and
damaged soybean seeds was significantly lower than two—
class classification. The classification accuracies of the
validation sample set were 90%, 61%, 72%, 54%, 84%, and
86%, corresponding to sound seeds and seeds damaged by
weather, frost, sprout, heat, and mold, respectively, when
using a six—class model. Sprout—damaged soybean seeds
were the most difficult to classify. The neural network model
yielded higher classification accuracy than the PLS model for
six—class classification. The average of correct classifica-
tions was 94.0% for the calibration sample set and 89.8% for
the validation sample set. The classification accuracies of the
validation sample set were 100%, 98%, 97%, 64%, 97%, and
83% corresponding to sound seeds and weather, frost, sprout,
heat, and mold damaged seeds, respectively. The optimum
parameters of the neural network model were momentum =
0.6, learning rate = 0.7, learning cycles = 150,000, and
wavelength region = 490-1690 nm.

Results from this limited sample source suggest that NIR
technology could be used to detect damaged soybean seeds.
More research is needed with a larger number of sample
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sources to confirm these results for applying this technology
to a commercial grading system.
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