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Automated Color Classification of Single Wheat Kernels Using Visible
and Near-Infrared Reflectance

F. E. Dowell1

ABSTRACT Cereal Chem. 75(1):142–144

Modification of an existing single kernel wheat characterization sys-
tem allowed collection of visible and near-infrared (NIR) reflectance
spectra (450–1,688 nm) at a rate of 1 kernel/4 sec. The spectral informa-
tion was used to classify red and white wheats in an attempt to remove
subjectivity from class determinations. Calibration, validation, and pre-
diction results showed that calibrations using partial least squares regres-

sion and derived from the full wavelength profile correctly classed more
kernels than either the visible region (450–700 nm) or the NIR region
(700–1,688 nm). Most results showed >99% correct classification for
single kernels when using the visible and NIR regions. Averaging of
single kernel classifications resulted in 100% correct classification of
bulk samples.

Wheat (Triticum aestivum L., and T. compactum Host.) under-
goes many environmental stresses that can affect kernel color. For
example, excessive rain, frost, insects, and disease can alter the
appearance of kernels, causing genetically red kernels to appear
white and genetically white kernels to appear red. This makes it
difficult, and sometimes impossible, for inspectors to determine
color class. Currently, Federal Grain Inspection Service inspectors
visually examine kernels and determine color class along with
other quality characteristics (Federal Register 1987). Color class
is important to determine accurately because functionality traits of
genetically red and white wheats cause them to mill and bake dif-
ferently. Thus, millers and bakers need accurate information on
color class to meet customer specifications. In addition, the current
process of determining color class is labor-intensive, and color
class can be difficult to determine if samples contain mixtures of
red and white wheat.

Other researchers have attempted to develop methods of objec-
tively determining color class. McCaig et al (1993) used a near-
infrared (NIR) and visible (VIS) spectrophotometer to classify red
and white wheat, but the instrument could not classify single ker-
nels and had difficulty with samples that were not obviously red
or white. Several researchers (Chen et al 1972, Bason et al 1995)
used a tristimulus color meter to classify red and white samples
with good accuracy, but they did not consider difficult-to-classify
samples nor could they handle single kernels. Ronalds and Blak-
eney (1995) used NIR-VIS information to classify bulk samples
with good success. However, they had some overlap of predicted
samples. The instrument also had no single kernel capability,
which is needed to detect mixed samples. Other researchers used
color machine vision (Neuman et al 1989a,b) and monochromatic
machine vision (Neuman et al 1987) to classify single wheat ker-
nels, but with considerable overlap of color classes. Delwiche and
Massie (1996) measured reflectance of single kernels over the
range of 550–750 nm and 1,100–2,500 nm. They showed classifi-
cation accuracies from 80 to 100%, with the best red and white
wheat classifications resulting from visible wavelength information.

The above-mentioned studies did not include automated classi-
fication and either could not accommodate single kernels or the
experimental designs did not include samples that were not obvi-
ously red or white. The objective of this research was to determine

the accuracy of an automatic single kernel color classification
system, particularly when classifying kernels difficult for inspec-
tors to classify. The automated classification system is part of
related research to integrate color and protein measurements into an
existing single kernel wheat characterization system (SKWCS).

MATERIALS AND METHODS

Instrumentation
A SKWCS was integrated with a DA-7000 diode-array spec-

trometer (Perten Instruments, Reno, NV) using fiber optics to
allow automated collection of VIS and NIR spectra. The SKWCS
consists of a singulator wheel, a weighing bucket, and crushing
mechanism. Martin et al (1993) gives a complete description of
the SKWCS. The modified kernel singulator delivered kernels at a
rate of 1 kernel/4 sec. The crushing mechanism of the SKWCS
was bypassed to preserve samples for confirmation of color class
as needed. The parallel-channel DA-7000 spectrometer has silicon
sensors spaced at 7-nm intervals that measure VIS and NIR radia-
tion at 400–950 nm. Indium-galium-arsenide sensors spaced at 11-
nm intervals measure NIR radiation at 950–1,700 nm. A stationary
grating disperses broadband energy to the sensors where all data is
collected simultaneously. A light chopper allows automatic rejec-
tion of ambient light. All data were interpolated to 2-nm intervals.
The DA-7000 collects spectra at a rate of 30/sec.

Sample Selection
Calibration, validation, and prediction sets were carefully selected

from samples representing hard red winter, soft red winter, hard
red spring, soft white and hard white wheat. The calibration and
validation samples originated from all growing areas in the United
States and had protein, moisture, and hardness values representing
crop averages and ranges reported in the Federal Grain Inspection
Service’s 1992, 1993, and 1994 market survey reports. Samples
originated from commercial sources and from breeders and were
stored in air-tight containers at room temperature before and dur-
ing testing. Of the 112 samples selected, 88 were considered obvi-
ously red or white classes, whereas the remaining 24 samples
were difficult for inspectors to determine color class. A NaOH test
(DePauw and McCaig 1988) confirmed the color class of all sus-
pect samples. The prediction set also represented the same growing
areas and classes listed above, but came from different locations
from the calibration set. Table I shows the number of samples for
each sample set.

Data Collection
Samples were randomly analyzed by placing ≈20 kernels from

one sample in the SKWCS and allowing the system to automati-
cally feed the kernels and collect spectra, resulting in 20
sequentially numbered spectra per sample. The spectrum stored
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for each kernel consisted of an average of six spectra. A new
baseline consisting of a spectrum of an optically flat black mate-
rial was collected after ≈100 spectra. All data were electronically
stored. Ten even-numbered spectra from each sample were placed
in the calibration file. Kernels not fully in the field of view during
data collection were discarded and replaced by their closest odd-
numbered neighbors. The remaining odd-numbered spectra made
up the validation set. The prediction set was collected similarly,
but not divided into odd or even samples.

Data Analysis
All data were analyzed using partial-least squares (PLS) regres-

sion, which is a spectral decomposition technique, performed by a
module of GRAMS/32 software (Galactic Industries, Salem, NH).
PLS uses concentration information during the decomposition process
and tries to get as much information as possible into the first few
loading vectors. PLS takes advantage of the correlation relation-
ship between the spectral data and the concentration of the biologi-
cal parameter, which in this case is color. Martens and Naes (1989)
give a complete description of PLS. All spectra were mean-cen-
tered before analysis. PLS was chosen over principal components
techniques because related unpublished research shows PLS is
superior because it takes advantage of concentration information.

For the calibration file, all red class kernels were assigned a
value of 1, and all white class kernels were assigned a value of 2.
In predictions, kernels with a predicted value of <1.5 were classed

as red and all other kernels classed as white. Statistical signifi-
cance of differences in classification percentages and coefficients
of determinations (r2) were calculated using least significant dif-
ferences and homogeneity of correlation coefficients procedures
described by Steel and Torrie (1980).

RESULTS AND DISCUSSION

System Performance
The automated system collected spectra at a rate of 1 kernel/4

sec. Approximately one kernel out of every 10 either was absent
or not fully in the field of view when a spectrum was collected.
This resulted in spectra of only the background, or of only part of
the kernel. These spectra were excluded from the calibration, vali-
dation, and prediction sets by culling spectra that had absorbance
values above a predetermined cutoff point. Observations of kernel
spectra and correlation spectra revealed excessive noise  below
450 nm, thus data below this value were excluded. In addition, the
interpolation algorithm resulted in truncation of values above
1.688 nm. Thus, the wavelength ranges used in all subsequent
analysis were within the 450–1,688 nm region.

Classification Results
Results are presented separately for the calibration, validation,

and prediction sets. The color class of the kernels used in each of these
three sets was predicted by using the calibration model developed
from the kernels in the calibration set. Correlation spectra showed
most information useful for correct classification lay in the 450–
650 nm region. However, results revealed that best classification
resulted from using the entire 450–1,688 nm region. The number
of PLS factors used for the calibrations were 22, 20, and 24 for the
VIS (450–700 nm), NIR (700–1,688 nm), and VIS+NIR region,

TABLE I
Number of Samples and Kernels Used in Wheat Kernel Color

Classification Studiesa

Calibration and Validation Sets Prediction Set

No.
Samples

Calibration
Kernels

Validation
Kernels

No.
Samples Kernels

Red
Obvious red 43 430 278 nab na
DTCc 12 120 101 na na
Total 55 550 379 30 300

White
Obvious white 45 450 376 na na
DTC 12 120 101 na na
Total 57 570 477 30 300

Grand total 112 1,120 856 60 600

a Maximum of 10 calibration or validation kernels drawn from each sample.
b Not applicable. Prediction set samples not divided into obvious red and

white or difficult-to-classify sets.
c Difficult-to-classify. Samples were difficult for trained inspectors to

determine color class.

TABLE II
Classification of Single Wheat Kernels Using Visible (VIS) (450–700 nm)

and Near-Infrared (NIR) (700–1,688 nm) Spectraa

Wavelength % Correct Standard

Range Red White Total r2 Error b

Calibration set
VIS 99.6 97.5 98.6a 0.825a 0.209
NIR 99.1 97.9 98.5a 0.807a 0.220
VIS+NIR 100.0 99.8 99.9b 0.875b 0.177

Validation set
VIS 96.6 95.0 95.7a 0.765a 0.222
NIR 96.6 96.0 96.3a 0.749a 0.233
VIS+NIR 98.2 98.1 98.1b 0.819b 0.200

Prediction set
VIS 98.7 98.0 98.3a 0.807a 0.226
NIR 95.7 98.3 97.0a 0.762b 0.256
VIS+NIR 98.7 99.7 99.2b 0.832a 0.220

a Values in columns followed by the same letter for a given set are not
significantly different as determined by the least significant difference and
homogeneity of correlation coefficients tests at the P = 0.10 level.

b Based on correctly classifying red kernels as <1.5 and white kernels as ≥1.5.

TABLE III
Classification of Obviously Red and White and Visually Difficult-to-
Classify Wheat Kernels Using Visible (VIS) (400-700 nm) and Near-

Infrared (NIR) (700-1,688 nm) Spectraa

% Correct

Difficult-to-Classify Obvious Red or White

Red White Total Red White Total

Calibration set
VIS 100 96.7 98.3a 99.5 97.8 98.6a
NIR 100 98.3 99.2ab 98.8 97.8 98.3a
VIS+NIR 100 100 100b 100 99.8 99.9b

Validation set
VIS 99.0 91.1 95.0a 95.7 96.0 95.9a
NIR 96.0 99.0 97.5a 96.8 95.2 95.9a
VIS+NIR 96.0 97.0 96.5a 98.9 98.4 98.6b

a Values in columns followed by the same letter for a given set are not
significantly different at the P = 0.10 level.

TABLE IV
Classification of Samples if the Color Class of All Kernels from Each

Sample is Averaged to Determine Color Class

Wavelength Rangea % Correct

Calibration Set
VIS 100
NIR 100
VIS+NIR 100

Validation Set
VIS 99.1
NIR 100
VIS+NIR 100

Prediction Set
VIS 100
NIR 96.7
VIS+NIR 100

a VIS = visible (450–700 nm). NIR = near-infrared (700–1,688 nm).



144  CEREAL CHEMISTRY

respectively. The number of factors selected was based on the F-
ratio of the predicted residual error sum of squares (PRESS).
When the ratio of the current PRESS to all previous PRESS val-
ues fell below 0.75, then this was considered the optimum number
of factors. Using a few more or less factors than those reported
did not significantly change classification accuracies.

A calibration based on the entire VIS and NIR spectrum
resulted in 99.9% correct classification of the kernels in the
calibration set (Table II). This classification rate was significantly
higher than the rates achieved when using the VIS or NIR regions
separately. Some differences were not significant at the P = 0.05
level, but were significant at the P = 0.10 level. Thus, the P = 0.10
level was used for all statistical comparisons. The r2 for the com-
bined VIS+NIR region (0.875) was also significantly higher than
results achieved when using either the VIS or NIR region separately.
The high classification rate achieved for any of the wavelength
regions examined (98.5–99.9%) was expected because these predicted
kernels were the same as those used to develop the calibration.

Table II shows classification rates for the validation set as being
only slightly lower than the calibration set rates. This was ex-
pected because kernels in the validation set came from the same
samples as kernels from the calibration set. Classification results
were slightly lower probably because some sampling error was
introduced due to kernel-to-kernel variability within samples. The
VIS+NIR region still classified kernels significantly better (98.1%
correct) than either the VIS (95.7%) or NIR (96.3%) regions
alone. The r2 value of 0.819 was also significantly better than the other
regions. The similarity in classification rates between the validation
and calibration set shows the validity of the calibration model.

The true test of the calibration is demonstrated by predicting the
color class of samples derived from sources independent of the
calibration set. Results from this prediction set (Table II) indicated
that classification rates were similar to those for the calibration
and validation sets. The correct prediction of kernels using the
VIS+NIR calibration was significantly higher than the other regions.
The correct classification rate of 99.2% and r2 of 0.832 was simi-
lar to the values achieved with the calibration and validation sets,
which illustrates the robustness of the calibration. Thus, this cali-
bration should be valid across growing regions and crop years
since the prediction set represented nine states and seven crop
years and no attempt was made to cull difficult samples from the
prediction set.

Table III separates the kernels into difficult-to-class and obvi-
ously red or white categories. The table illustrates that the cali-
bration performs similarly for both the difficult kernels and obvi-
ous red or white kernels.

Table IV shows classification results if the color classes of in-
dividual kernels are averaged to give an average color class for the
sample. In all tests, the VIS+NIR calibration classified 100% of
the samples correctly. The VIS and NIR calibrations each mis-
classed a few samples, which again illustrates that both regions
are needed for maximum classification accuracy.

These results compare favorably with those reported by Del-
wiche and Massie (1996) where they reported 97.5% and 98.8%
correct classification for white and red wheat kernels, respec-
tively. They achieved their results using only the 551–750 nm
region, but did not included difficult-to-classify kernels. The inclu-
sion of kernels that were not obviously red class or white class in
the research reported here likely explains the need for NIR to im-
prove classifications. It was also encouraging to see that results
from the present tests were similar to those reported by Delwiche
and Massie, considering that kernels of the present study were
automatically fed and randomly placed in the viewing area,
whereas kernels of their study were hand-placed and always ori-
ented in the same direction. Thus, error due to kernel placement
was likely higher in the present tests, yet excellent classification

was still achieved.
All results show that NIR information is needed in addition to

visible wavelength information. This suggests that there is some
difference in the molecular structure of red and white wheat
classes. NIR spectra are primarily influenced by combination and
overtone bond vibrations involving carbon, hydrogen, nitrogen,
and oxygen bonds. However, the presence of other atoms can in-
fluence the spectra. Thus, to fully explain why NIR is important in
classifying red and white wheat classes, further chemometric
analysis is needed to identify what physical and biochemical
properties are unique to each color class.

In summary, results from this study show that an automated
system can remove subjectivity in classifying red and white wheat
kernels by measuring spectral reflectance from 450–1,688 nm. A
correct classification rate for individual kernels of 99.2% on sam-
ples independent of the calibration set was achieved. When aver-
aging single kernel predictions, 100% of all bulk samples were
correctly classified. Thus, this system will reduce inspector sub-
jectivity in determining color class in samples of wheat and iden-
tify mixtures of red and white wheat classes by predicting single
kernel color class. Future work is recommended on identifying
specific wavelengths contributing to correct classification and on
determining the chemical components responsible for the unique-
ness of red and white color classes.
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