
Vol. 88, No. 6, 2011 589 

Evaluation of Waxy Grain Sorghum for Ethanol Production1 

Shuping Yan,2,3 Xiaorong Wu,2 Scott R. Bean,4 Jeffery F. Pedersen,5 Tesfaye Tesso,6 
Yuanhong R. Chen,4 and Donghai Wang2,7 

 ABSTRACT Cereal Chem. 88(6):589–595 

The objective of this research was to investigate the fermentation per-
formance of waxy grain sorghum for ethanol production. Twenty-five 
waxy grain sorghum varieties were evaluated with a laboratory dry-grind 
procedure. Total starch and amylose contents were measured following 
colorimetric procedures. Total starch and amylose contents ranged from 
65.4 to 76.3% and from 5.5 to 7.3%, respectively. Fermentation efficien-
cies were in the range of 86.0–92.2%, corresponding to ethanol yields of 
2.61–3.03 gallons/bushel. The advantages of using waxy sorghums for 

ethanol production include easier gelatinization and low viscosity 
during liquefaction, higher starch and protein digestibility, higher free 
amino nitrogen (FAN) content, and shorter fermentation times. The re-
sults showed a strong linear relationship between FAN content and fer-
mentation rate. Fermentation rate increased as FAN content increased, 
especially during the first 30 hr of fermentation (R2 = 0.90). Total starch 
content in distillers dried grains with solubles (DDGS) was less than 1% 
for all waxy varieties. 

 
Unlike wheat, corn, and rice, grain sorghum is a starch-rich 

cereal that can be grown economically in the semiarid regions 
of the world. In the United States, sorghum is the second-ranking 
feed grain and is cultivated primarily in the Great Plains, in-
cluding the Midwest and the Southwest. Although it is primarily 
used as feed in the United States, grain sorghum has been 
reported in wide uses such as wallboard, fermented beverages, 
traditional foods (porridges and flat breads), and conventional pan 
bread for gluten-free markets (Owuama 1997; Rooney and Serna-
Saldivar 2000; Schober et al 2005; Taylor et al 2006). Sorghum 
utilization by the ethanol industry has been growing in the United 
States in recent years (RFA 2007; Sarath et al 2008). Currently, 
about 95% of U.S. fuel ethanol is produced from corn and ≈4% is 
from sorghum grain, which uses 30–35% of the total sorghum 
production in the United States (Kubecka 2011; USDA-NASS 
2011). Sorghum could make a larger contribution to the nation’s 
fuel ethanol requirements (Farrell et al 2006; Rooney et al 2007; 
Wu et al 2007). 

Overall, sorghum composition is similar to corn. Starch is the 
major grain component, followed by protein. Most sorghum 
starches contain 20–30% amylose and 70–80% amylopectin, but 
waxy and heterowaxy sorghums contain 0–15% amylose and 85–
100% amylopectin (Rooney and Serna-Saldivar 2000). Starch 
content in grains is a good predictor of ethanol yield (Lacerenza 
et al 2008; Zhao et al 2009). The presence or absence of amylose 
may influence ethanol yield and conversion efficiency. Wu et al 
(2007) reported that low amylose content in sorghum grain may 
be associated with increased ethanol conversion efficiency. One of 

the aims for this study, which was conducted on 25 varieties of 
waxy grain sorghum, was to investigate further whether ethanol 
yield and fermentation efficiency were influenced by the contents 
of amylose and amylopectin in waxy grain sorghums. 

Both ethanol yield and fermentation efficiency have been studied 
to evaluate the performance of grain sorghum in ethanol production 
(Wu et al 2007). Recent research has shown that key factors affect-
ing the ethanol yield from grain sorghum include grain hardness 
and particle size, starch content and digestibility, amount and types 
of phenolic compounds present in sorghum, amount of amylose, 
formation of amylose-lipid complexes during mashing (Wu et al 
2007; Wang et al 2008; Yan et al 2009), level of extractable pro-
teins, protein-starch interaction, and mash viscosity (Zhao et al 
2008). Sorghum as a raw material can be converted to ethanol with 
a wide range of efficiency (Wu et al 2007). 

Currently, almost 100% of industrial ethanol is produced by 
yeast from starch-rich or sugar-rich biomass. The availability of 
yeast food is vital to yeast growth and its efficiency in converting 
fermentable sugars into ethanol during fermentation. As such, 
most yeast fermentation systems need nutrient supplementation. 
Yeast uptakes not only fermentable sugars for ethanol production 
but also nutrients (amino acids, minerals, and vitamins) for its 
own growth and functional maintenance (e.g., levels of invertase 
and permeases, which are responsible for sugar transportation and 
conversion). Free amino nitrogen (FAN) is an essential nutrient 
for yeast growth during fermentation (Pickerell 1986; Taylor and 
Boyd 1986). Protein is the second major component in grain sor-
ghum. Protein degradation could provide nitrogen for yeast 
growth during fermentation. Recent research has found that etha-
nol yield and conversion efficiency significantly increased as 
FAN increased in laboratory-germinated and field-sprouted grain 
sorghum (Yan et al 2009, 2010). Yeast can only utilize FAN and 
short peptides, not large intact proteins. Much research has been 
conducted on the effects of protein and protein digestibility on 
ethanol fermentation of various cereal grains such as wheat and 
barley (Lacerenza et al 2008), sorghum and maize (Pérez-Carrillo 
and Serna-Saldívar 2007; Pérez-Carrillo et al 2008; Zhao et al 
2008), and different varieties of maize (Wu 1989; Wang et al 
2005), but little research has been conducted on the effect of 
FAN on the conversion efficiency of sorghum varieties in etha-
nol fermentation. 

Sorghum is a large, variable genus with many cultivars. Many 
varieties of sorghum exist, and more are being developed through 
plant breeding to select and concentrate desired characteristics in 
new varieties for food and feed applications (Rooney and Serna-
Saldivar 2000; Mace and Jordan 2010). We believe genetically 
improving the quality of grain sorghum for ethanol production 
could increase the utilization of sorghum for ethanol production 
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in the near future. The main objective of this research was to 
investigate the fermentation performance of waxy grain sorghum 
for ethanol production. 

MATERIALS AND METHODS 

Grain Sorghum 
Twenty-five waxy grain sorghum varieties were obtained from 

the U.S. Department of Agriculture, Agricultural Research Ser-
vice (USDA-ARS), Grain, Forage, and Bioenergy Research Unit 
(Lincoln, NE). The origin of these waxy varieties was from 10 
different countries around the world, and the seeds of these acces-
sions were increased by the USDA-ARS in Nebraska (Pedersen et 
al 2007). Detailed sample information is listed in Table I. The 
samples were manually cleaned by removing plant debris and 
foreign materials and then were ground to flour with a UDY cy-
clone sample mill (Fort Collins, CO) with a 1.0 mm screen. 

Preparation of Mashes and Inoculation of Yeast 
Liquozyme SC DC, a heat-stable α-amylase from Bacillus 

licheniformis was used for liquefaction (Novozyme, Franklinton, 
NC). The listed enzyme activity was 240 KNU/g (one kilo Novo 
unit, or KNU, is the amount of enzyme that breaks down 5.26 g 
of starch per hour at Novozyme’s standard method for determina-
tion of α-amylase). Spirizyme Fuel (Novozyme), an amyloglu-
cosidase from Aspergillus niger, was used for saccharification. Its 
listed enzyme activity was 750 AGU/g (one AGU is the amount of 
enzyme that hydrolyzes 1 μmol of maltose per minute under speci-
fied conditions). Ethanol red active dry yeast (Saccharomyces 
cerevisiae) from Fermentis (Milwaukee, WI) was used for 
simultaneous saccharification and fermentation (SSF). Before 
inoculation, dry yeast (≈2 × 1010 live cells per gram) was acti-
vated by adding 1.0 g of dry yeast cells into 19 mL of preculture 
broth (containing 20 g of glucose, 5.0 g of peptone, 3.0 g of yeast 
extracts, 1.0 g of KH2PO4, and 0.5 g of MgSO4·H2O per liter) and 
shaking at 200 rpm in a 38°C incubator for 30 min. The activated 
yeast culture had a cell concentration of roughly 1 × 109 cells/mL. 

Thirty grams (db) of sorghum flour for each sample was dis-
persed in 100 mL of water (containing 0.1 g of KH2PO4 and 

preheated to about 60°C) in a 250 mL Erlenmeyer flask. Twenty 
microliters of high-temperature α-amylase (Liquozyme, 240 
KNU/g) was added into the sorghum flour slurry. The flasks were 
transferred to a 70°C water-bath shaker operating at 170 rpm. The 
water-bath temperature was gradually increased from 70°C to 
85°C over a 30 min period. The liquefaction process continued at 
85°C for another 60 min. The flasks were then removed from the 
water-bath shaker and cooled to room temperature. Materials 
sticking to the inner surface of each flask were scraped back into 
the mash with a spatula, and then the inner surface was rinsed 
with 2–3 mL of distilled water with a fine-tipped polyethylene 
transfer pipette. The pH of the mashes was adjusted to 4.2–4.3 
with 2N HCl. After pH adjustment, 100 μL of amyloglucosidase 
(Spirizyme Fuel), 1 mL of activated yeast broth, and 0.3 g of 
yeast extract (1 mL of freshly prepared 30% yeast extract solu-
tion) were added to each flask. The inoculated flasks were then 
sealed with S-shaped airlocks and transferred to an incubator 
shaker for SSF. All samples were run in duplicate. 

Fermentation and Distillation 
Ethanol fermentation was conducted at 30°C in an incubator 

shaker (I2400, New Brunswick Scientific, Edison, NJ) operating 
at 150 rpm for 72 hr. The fermentation process was monitored by 
measuring the weight loss from evolution of carbon dioxide (CO2) 
during fermentation. The weight loss was related to ethanol yield 
during fermentation (C6H12O6 → 2C2H6O + 2CO2

↑). The ratio of 
ethanol to carbon dioxide is theoretically 46:44. 

After 72 hr of fermentation, finished mash in each 250 mL 
flask was entirely transferred to a 500 mL distillation flask, and 
the Erlenmeyer flask was washed four times with 100 mL (25 
mL × 4) of distilled water. Two drops of antifoam agent 204 were 
added into the distillation mash to prevent foaming during 
distillation. The contents were distilled in a distillation unit, and 
the distillates were collected into a 100 mL volumetric flask that 
was immersed in ice water. When the distillates in the volumetric 
flask approaching the 100 mL mark (<0.5 mL to the mark), the 
volumetric flask was removed from the distillation unit and the 
distillation process was stopped. The distillates in the volumetric 
flask were equilibrated for a few hours in a 25°C water bath and 

TABLE I
Sample Information, Chemical Composition (%, db), and Fermentation Efficiency (%) of Waxy Sorghumsa 

Accession No. Local Name Origin GBSS Allele Amylose Starch Protein Fat Fiber Ash Efficiency Tannin 

PI220636  Nai-Shaker  Afghanistan  No wxa 6.6 ± 0.57 66.80 14.46 6.56 1.56 2.64 88.4 + 
PI23231  Brown Kaoliang  China  Yes wxb 6.8 ± 0.38 67.46 13.75 5.02 2.22 2.01 89.4 + 
PI548008  Huang Ke Jiao  China  No wxa 5.5 ± 0.70 68.74 15.09 4.98 1.52 2.54 87.7 + 
PI563576  LV 129  China  No wxa 6.9 ± 0.87 68.38 15.80 5.70 1.59 2.38 89.8 − 
PI563670  L 1999B-17  China  Yes wxb 6.2 ± 0.20 76.34 11.22 3.78 1.75 1.85 88.3 − 
PI563671  L 1999B-18  China  Yes wxb 5.8 ± 0.90 72.41 12.40 3.60 1.98 1.94 90.3 − 
PI586524  IS 27929  China  No wxa 6.2 ± 0.35 69.88 13.53 5.21 1.86 2.16 89.6 + 
PI586526  IS 27931  China  No wxa 7.0 ± 0.15 69.48 12.40 5.37 1.75 1.89 90.6 + 
PI586529  IS 27935  China  No wxa 6.7 ± 0.45 66.79 14.29 5.69 1.55 1.72 92.2 + 
PI455543  ETS 3634  Ethiopia  No wxa 6.6 ± 0.15 70.76 13.60 5.35 1.53 2.01 89.4 − 
PI586448  Cody  Hungary  No wxa 5.8 ± 0.64 75.19 12.02 4.81 1.77 1.96 89.9 − 
PI586454  Leoti  Hungary  No wxa 6.8 ± 0.72 67.71 14.17 5.11 1.80 2.12 89.1 + 
PI217897  305 Indonesia  Yes wxb 5.9 ± 0.20 68.94 12.02 5.18 1.61 1.71 89.9 + 
PI234456  Unknown Japan  No wxa 6.4 ± 1.12 71.30 12.15 4.94 1.58 1.75 90.2 + 
PI82340  Kaoliang-WX  Korea  No wxa 6.5 ± 0.30 72.30 12.34 4.23 1.89 2.09 88.3 + 
PI87355  Bomususu  Korea  No wxa 6.1 ± 0.40 69.71 14.40 5.17 1.88 2.14 89.9 + 
PI88004  Susu zairai shu  Korea  No wxa 6.1 ± 0.59 69.23 13.68 5.04 1.63 2.16 88.8 + 
PI563015  Kaura Mai Faran Kona  Nigeria  No wxa 6.6 ± 0.51 65.36 15.46 5.64 1.75 1.93 88.4 + 
PI567803  Yungju South Korea  No wxa 7.0 ± 0.35 67.19 13.51 5.46 1.57 2.06 91.7 + 
PI567809  Unknown South Korea  No wxa 6.6 ± 0.38 67.55 14.29 5.27 1.51 1.82 90.9 + 
PI567811  Unknown  South Korea  No wxa 7.3 ± 0.20 66.80 13.43 5.09 1.70 1.97 91.3 + 
PI562758  Basuto Red Q2-1-29  USA  No wxa 6.2 ± 1.02 72.18 16.75 4.28 2.03 2.28 86.0 − 
PI563068  IS 8303  USA  No wxa 6.2 ± 0.83 71.53 14.30 3.00 2.25 2.06 88.5 − 
PI563402  IS 10497  USA  No wxa 6.1 ± 0.10 69.94 15.04 3.78 1.94 2.49 89.6 − 
… Ellis USA, wild No Wx 6.3 ± 0.10 72.86 13.28 4.46 1.91 1.71 90.5 − 
a Protein contents were calculated by 6.25 × N contents from the Leco method (AOAC method 990.03). GBSS = granule-bound starch synthase; wxa and wxb are different 

forms of the allele. 
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then brought to the 100 mL mark with distilled water. Ethanol 
concentrations in the distillates were analyzed by HPLC with a 
Rezex RCM column (Phenomenex, Torrance, CA) and refractive 
index detector (Wu et al 2006). 

Morphological Structure of Waxy Grain Sorghum 
The microstructures of waxy sorghum kernels were examined 

with a scanning electron microscope (SEM) with an accelerating 
voltage of 5.0 kV (S-3500N, Hitachi Science Systems, Tokyo). 
Samples were vacuum coated with a mixture of 60% gold and 
40% palladium particles with a Desk II combined sputter coater 
and etch unit (Denton Vacuum, Moorestown, NJ). 

Single Kernel Characterization and Particle-Size Analysis 
Kernel hardness, weight, and size of waxy sorghum samples 

were analyzed through the single kernel characterization system 
(SKCS) 4100 (Perten Instruments, Springfield, IL) controlled by 
Microsoft Windows software SK4100. The reported data were the 
means of 300 kernels. 

The particle size of ground sorghum flour was measured by an 
LS 13 320 single wavelength laser-diffraction particle-size ana-
lyzer (PSA) with Tornado dry powder system (Beckman Coulter, 
Miami, FL). Samples were run in duplicate. 

Pasting Properties 
Pasting properties of the sorghum flour samples were meas-

ured with a Rapid Visco Analyzer (RVA) (RVA-3D, Newport 
Scientific, Warriewood, Australia). For sample preparation, 4 g 
of sorghum flour (14% moisture basis) and distilled water (25 
mL) were added to an aluminum canister at room temperature. A 
plastic paddle was inserted into the canister and then jogged and 
rotated manually for about 30 sec to break up any lumps. The 
paddle (with the sample canister) then was attached to the electric 
motor in the head of the RVA. The sample was premixed by ini-
tially running the motor at 960 rpm for 10 sec, and then the motor 
was slowed to 160 rpm for the rest of the test. The standard 23 
min profile of AACC International Approved Method 76-21.01 
(2010) was followed for sample testing. Each sample was ana-
lyzed in duplicate. 

Thermal Properties 
Differential scanning calorimetry (DSC) (Pyris 1, Perkin-Elmer, 

Norwalk, CT) measurement was conducted and calibrated with 
indium. Sorghum samples were weighed accurately (≈10 mg) into 
stainless steel pans with a microbalance. Deionized distilled water 
was added carefully with a micropipette into the sample pan. The 
weight ratio of water to dry flour was 3:1. The pans were sealed and 
allowed to rest for about 1 hr. Samples were analyzed at heating 
and cooling rates of 10°C/min. The temperature regime consisted of 
heating from 25 to 150°C with an initial 1 min hold. Data from the 
DSC scans were analyzed with Pyris software 7.0 for Windows 
(Perkin-Elmer). Enthalpies are reported on a dry flour weight basis. 
Each sample was analyzed at least in duplicate. 

Protein Digestibility 
Protein digestibility was determined following the method of 

Mertz et al (1984) with modification: 200 mg sorghum samples 
were suspended in 35 mL of pepsin solution (1.5 g of enzyme/L 
of 0.1M potassium phosphate buffer, pH 2.0) and incubated 
with vigorous shaking at 37°C. Pepsin (P-7000, Sigma-Aldrich, 
St. Louis, MO; activity 924 units/mg of protein) digestion was 
stopped by addition of 2 mL of 2M NaOH at the end of the 2 hr 
digestion course. After centrifugation at 4,000 × g for 15 min, the 
supernatant was discarded, and the residue was washed in 10 mL 
of 0.1M phosphate buffer (pH = 2.0) and centrifuged as before. 
After the second washing and centrifugation, the residue was fro-
zen and then lyophilized. The freeze-dried residue was then 
weighed and analyzed for nitrogen content. 

Analytical Methods 
AOAC official methods (2000) were used to analyze sorghum 

flour samples for dry matter and moisture (925.10), crude protein 
(990.03), ash (942.05), crude fiber (962.09), and crude fat 
(920.39). Total starch and amylose contents were measured 
through colorimetric procedures (Megazyme total starch and 
amylose/amylopectin kits; procedures are available at http:// 
secure.megazyme.com/downloads/en/data/K-TSTA.pdf and http:// 
secure.megazyme.com/downloads/en/data/K-AMYL.pdf). The 
presence of amylose in the waxy sorghum kernels was also 
qualitatively examined through iodine-staining techniques 
(Pedersen et al 2004). FAN was analyzed through the European 
Brewery Convention method (EBC 1987) with modification. 
Grain sorghum flour (150 mg) was mixed with 1.5 mL of deion-
ized distilled water in a 2.5 mL microcentrifuge tube and vortexed 
five times in 10 min and then centrifuged at 12,000 rpm for 20 
min. The supernatant was then ready for FAN analysis. A tannin 
bleach test followed the Xiang method (2009). Glucose, glycerol, 
and ethanol in samples were determined by HPLC (Shimadzu 
Scientific Instruments, Columbia, MD) according to the method 
described by McGinley and Mott (2008). The column used was a 
Rezex ROA column (Phenomenex), and the detector was a refrac-
tive index detector (RID-10A, Shimadzu) maintained at 40°C. 
The mobile phase was 5mM sulfuric acid at a flow rate of 0.6 
mL/min, and the oven temperature was 65°C. HPLC data were 
analyzed with Shimadzu EZStart 7.4 software. Fermentation effi-
ciency was calculated as the ratio of the actual ethanol yield 
(grams of ethanol determined by HPLC) to the theoretical ethanol 
yield (= starch grams × 1.11 × 0.511) (Yan et al 2009). 

Statistical Analyses 
All experiments were performed at least in duplicate. The tabu-

lar results presented were the mean values of repeated experimen-
tal data. Regression analyses were conducted in Microsoft Excel 
with the linear regression function. 

RESULTS AND DISCUSSION 

As clearly indicated by the major components of the samples 
from proximate analysis, the waxy sorghum samples used in this 
project had diverse genetic backgrounds and physical and chemi-
cal properties. Normal cultivars on the market have starch content 
of 72–76% (db) and protein content of around 12% (db). The 
starch content of these samples ranged from 65 to 76% (db), and 
their protein content was 12–15.8% (db). Details of the proximate 
analysis results are listed in Table I. 

Effect of Starch on Ethanol Production 
Figure 1 shows correlation between total starch content and 

ethanol yield from fermentation of 25 waxy grain sorghum sam-
ples. Ethanol yield (gallons/bushel) was linearly correlated with 
total starch content (R2 = 0.7946). This result is in agreement with 
those reported by Wu et al (2007) and Lacerenza et al (2008). 
Sorghum cultivars with high starch and low protein contents are 
cultivars of choice for fuel ethanol production. Wu et al (2008) 
reported that higher starch content means higher ethanol yield, 
better processing efficiency, and lower amounts of residues after 
fermentation; therefore, total starch content of waxy grain sor-
ghum can be a predicator of ethanol yield. Average ethanol yield 
from waxy grain sorghum is similar to corn (Lemuz et al 2009). 
Although the sorghum samples tested in this study have diverse 
genetic backgrounds, which translate into different starch and 
protein contents, the ethanol yields ranged from 2.6 to 3.0 gallons 
per bushel, with an average of 2.8 gallons per bushel. 

Endosperm of waxy grain sorghum showed little or no sign of 
amylose when tested by rapid iodine-staining techniques (Peder-
sen et al 2004). If enough amylose is present in the grain, iodine 
will bind with amylose in the endosperm of a grain kernel and 
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turn its color dark blue; waxy grains contain no or little amylose 
and will turn reddish brown (Pedersen et al 2004). The iodine-
staining test showed that amylose contents were low in most 
waxy sorghum samples and slightly higher in a few other sam-
ples. The Megazyme amylose assay and DSC analysis results 
further confirmed the iodine-staining test results. All 25 tested 
cultivars of waxy grain sorghum had small amounts of amylose, 
ranging from 5.5 to 7.3%. Fortunately, amylose content in waxy 
grain sorghum had no significant effect on ethanol yield (R2 = 
0.1341, Figure 1). This was probably because amylose contents in 
the tested samples were all very low (<7.3%) and within a narrow 
range (5.5–7.3%, Table I). The chances for such small amounts of 
amylose to complex with lipids in waxy grain sorghum were 
lower than in normal grain sorghums, which have amylose con-
tents of 23–30% (Wu et al 2006, 2010). 

DSC results confirmed that only four (PI220636, PI217897, 
PI548008, and PI562758) out of the 25 tested waxy cultivars 
showed an amylose-lipid complex enthalpy peak at temperatures 
around 100°C (Table II). Fermentation efficiencies of those four 
cultivars (with amylose-lipid complex peaks) were lower than 
those of cultivars without amylose-lipid complex. Actually, two of 
these waxy sorghum samples (PI562758 and PI548008) had the 
lowest fermentation efficiencies among all 25 tested samples,  
86.0 and 87.7%, respectively; the average efficiency of all 25 
samples was 89.6%. Previous research conducted on different 
ratios of commercial amylose and amylopectin for ethanol 
production showed that high amylose content led to low ethanol 
yield (Wu et al 2006). In normal wheat, corn, and sorghum, amy-
lose is located in the amorphous region of starch granules and 

amylopectin is in the crystalline region of starch granules. When 
amylose content is high in starch granules, amylose can readily 
leach out of starch granules when the granules are absorbing wa-
ter. On the other hand, higher amylose content also provides in-
creased amylose-lipid complex formation that inhibits swelling of 
starch granules. In waxy varieties, amylose content is low, and 
there is little amylose leaching out from starch granules when 
they are absorbing water (Sang et al 2008). Thus, amylose in 
waxy grain sorghum did not significantly affect starch granules 
among waxy varieties; nor did the small amount of amylose in 
waxy grain sorghum have a significant effect on the dry-grind 
ethanol process and the final ethanol yield. RVA pasting profiles 
of waxy grain sorghum flour showed a lower pasting temperature, 
higher peak viscosity, and lower final viscosity than for normal 
sorghum starch (Zhao et al 2008). The SKCS and PSA data 
showed that the hardness index (average of 88.6) of waxy sor-
ghum was similar to that of normal sorghum (87.7) (Pedersen et 
al 1996) and significantly lower than that of corn (Abdelrahman 
and Hoseney 1984), and it can more easily be ground into fine 
particles. Lower pasting temperature, lower final viscosity, and 
lower hardness of waxy sorghum imply less energy consumption 
in the dry-grind ethanol process. 

Two common phenomena were observed when waxy grain sor-
ghum kernel was scanned with SEM (Figure 2). One was kernel 
texture (low magnification, ×500), and the other was starch gran-
ule features (high magnification, ×5,000). Figure 2A shows that 
there are many cracks on the kernel that may render waxy grain 
kernels easier to grind and may generate more damaged starches 
in the flour. In previous research, Abdel-Aal et al (2002) reported 
that there were more damaged starches in waxy wheat and waxy 
corn flour than in those from normal wheat and corn. Waxy sor-
ghum starches probably share the same properties with waxy 
wheat and waxy corn. Figure 2B shows many holes in waxy 
starch granules, which obviously make waxy starch granules 
more susceptible to enzymatic digestion because water and en-
zymes can more easily enter starch granules through these pores. 
The results agree with the conclusion drawn by Sullins and 
Rooney (1975), that is, waxy starch granules were more suscepti-
ble to enzymatic degradation than were nonwaxy starch granules. 
Sullins and Rooney (1975) also found that waxy grain sorghum 
had a less dense peripheral endosperm than did nonwaxy grain 
sorghum. The waxy sorghum flours, however, absorbed signifi-
cantly more water than did normal sorghum flours, which could 
be explained by the presence of pores on the waxy starch gran-
ules. Wu et al (2007) reported that waxy sorghum cultivars had 
higher conversion efficiency in the laboratory dry-grind ethanol 
process than did nonwaxy cultivars because waxy starches were 
more easily hydrolyzed and gelatinized during the mashing proc-
ess. Data from this study prompted a similar conclusion to that of 
Wu et al (2007). 

Effect of FAN on Ethanol Production 
Researchers have found that one of the factors limiting the pro-

duction of high levels of ethanol by brewing yeast is nutritional 
deficiency (Casey and Ingledew 1986). When a nitrogen source is 
supplemented in the fermentation system, the nutritional supple-

Fig. 1. Relationships between A, amylose content and ethanol yield, and
B, starch content of waxy grain sorghum and fermentation efficiency and
ethanol yields. 

TABLE II 
Differential Scanning Calorimetry Properties of Waxy Grain Sorghuma 

 
Temperature
Category 

Onset 
Temp.
(°C) 

Peak  
Temp.  
(°C) 

Conclusion 
Temp. 
(°C) 

Second 
Peak  

Temp. (°C)

Gelatinization
Enthalpy 
(ΔH, J/g) 

Min 69.91 75.59 81.47 99.00 8.19 
Max 73.51 78.13 94.38 102.6 11.88 
Mean 71.58 76.54 84.27 100.1 9.62 

a Values are average of two measurements. Among 25 varieties, only 4 had the 
second peak (amylose-lipid complex).  
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ment can promote rapid fermentation to a higher ethanol level 
without the need to genetically improve yeast. Therefore, FAN in 
the original sample is crucial to yeast performance. A strong posi-
tive linear relationship between fermentation efficiency at the 
30th hr of fermentation and FAN content in the original sample 
was observed in this study (Figure 3), but by the end of fermenta-
tion, no linear correlation was found between FAN content in the 
original sample and the final fermentation efficiency. Sufficient 
FAN in the fermentation mash is critical to yeast cell growth and 
proliferation during the early stage of fermentation. The higher 
the FAN levels in finished mash, the faster the fermentation proc-
ess. Because almost all the sugars in the tested samples were con-
verted into ethanol, the final fermentation efficiencies among the 
samples at the end of fermentation were very close. Our previous 
research strongly supports the effects of FAN on ethanol fermen-
tation efficiency from field-sprouted sorghum (Yan et al 2010). 
Casey et al (1984) made the same conclusion about the effect of 
FAN on fermentation efficiency of high-gravity brewing from 
wheat. Therefore, FAN content in a sample could be a useful 
indicator of a sample’s performance in ethanol fermentation. Data 
from our previous studies (Yan et al 2009, 2010) showed similar 
results, which agree with results reported by several other inves-
tigators (Casey et al 1984; Lekkas et al 2005). Mullins and 
NeSmith (1987) studied ethanol fermentation with high-tannin 
sorghum and revealed that the addition of nitrogen accelerated the 
ethanol fermentation rate. 

Effect of Protein Digestibility on Ethanol Production 
Protein digestibility has been used as a quality indicator for hu-

man foods and animal feeds. A protein with high digestibility 
potentially has better nutritional value than those with low 
digestibility. The protein digestibility of sorghum has been stud-
ied extensively in vitro by using pepsin because the in vitro pep-
sin digestibility results correlate well with in vivo digestibility 
results (Maclean et al 1981), which makes sense because humans 
and animals produce pepsin in their digestive tracts. In contrast, 
yeast does not produce any exoprotease for ethanol fermentation. 
However, Wang et al (2008) reported a strong linear correlation 
between protein digestibility of some normal grain sorghum sam-
ples and their fermentation efficiency in ethanol production. The 
same protein digestibility methodology was applied in this study 
regarding waxy grain sorghums. The ethanol fermentation data on 
waxy sorghum samples showed that fermentation efficiency in the 
laboratory dry-grind process did not show any linear correlation 
with protein digestibility (R2 = 0.0093) (Figure 4). The presence 

of tannins in some of the sorghum cultivars used in this study 
could be the main cause for such divergence. Tannins have been 
related to lowering starch digestibility by inactivating amylases 
(Davis and Hoseney 1979). The same phenomenon of enzyme 
inactivation may be applied to pepsin here in the protein digesti-
bility test. Protein-hydrolyzing activity of pepsin in the digestibil-

 

Fig. 2. A, scanning electron microscopy (SEM) image of waxy grain sorghum endosperm showing cracks (×500); B, SEM image of starch granules 
showing many fine pores (×5,000). 

 

Fig. 3. Linear correlation between free amino nitrogen content (mg/L) in 
original sorghum samples and fermentation efficiency of waxy grain sor-
ghum at the 30th hr of fermentation. 

 

Fig. 4. Relationship between ethanol fermentation efficiency and protein 
digestibility of tested sorghum samples. 
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ity test could have been inhibited by the tannins in the tested 
samples. A qualitative tannin test (bleach test) revealed that 16 of 
the 25 tested waxy cultivars contained tannins. Although yeast 
itself does not produce exoproteases during the normal fermen-
tation process, addition of proteinases during mashing or the SSF 
process nevertheless can generate favorable results (increasing 
the fermentation rate, cell tolerance to ethanol, and final ethanol 
yield). Hydrolysis of proteins in the raw materials might help with 
the release of more starch granules from the protein matrix and 
increase FAN content in the mash (Thomas and Ingledew 1990; 
Pérez-Carrillo et al 2008), which will facilitate yeast growth and 
increase the ethanol fermentation rate and efficiency. 

Effect of Tannins on Ethanol Production 
Sorghum tannins have attracted great attention from a number 

of researchers because of their effects on product yield and qual-
ity, processing properties, starch and protein digestibility, and 
health (Beta et al 2000; Wang et al 2008; Dlamini et al 2009; 
Serrano et al 2009). Wu et al (2007) claimed that sorghum tannins 
retarded the liquefaction process during mashing and resulted 
in high-viscosity mash, slow starch-to-glucose conversion, and 
lower conversion efficiency. The data showed that ethanol yields 
and fermentation efficiencies of waxy sorghums containing tan-
nins were 2–3% lower than those of waxy sorghums without tan-
nins. Mullins and NeSmith (1986) studied ethanol fermentation 
from bird-resistant and non-bird-resistant grain sorghum and re-
ported that high tannin levels greatly reduced the rate of ethanol 
production. Evidently, the rate of ethanol production was much 
slower from bird-resistant grain sorghum than from non-bird-
resistant grain sorghum because tannins partially inhibited the 
activities of amylases and glucose was generated at a much 
slower rate in the bird-resistant grain sorghum mash. On the other 
hand, tannins could cause sorghum protein cross-linking during 
heating or cooking, prevent starch granules from absorbing water, 
and prevent enzymatic degradation (Duodu et al 2003). 

Chemical Composition of Distillers Dried Grains  
with Solubles 

Distillers dried grains with solubles (DDGS) is a by-product 
from ethanol production and is typically used as animal feed. The 
nutritional composition is critical to buyers. Table III shows the 
major components of DDGS from waxy and nonwaxy grain sor-
ghum varieties (Wu and Sexson 1984; Saunders and Rosentrater 
2009; Stein and Shurson 2009; Urriola et al 2009). Residual 
starch contents in industrial corn or sorghum DDGS are around 
5% (Saunders and Rosentrater 2009; Stein and Shurson 2009). 
DDGS from normal grain sorghums following a laboratory dry-
grind ethanol process had 1---2% starch. The residual starch con-
tents in DDGS from waxy grain sorghum samples in this study 
were much lower, only around 0.5%, which means that starch in 
waxy grain sorghum was more efficiently used for ethanol 
production than that in normal grain sorghum. Because waxy 
sorghum generally has higher protein content than corn and nor-
mal sorghum and because starch in waxy sorghum is more effi-
ciently utilized in ethanol production, DDGS from waxy sorghum 
will have higher crude protein, crude fat, and ash contents than 
will DDGS from normal grains (Saunders and Rosentrater 2009). 
Because the major market for DDGS right now is the animal feed 
industry, higher protein content means better quality, broader ap-
plication, and possibly better market price. 

CONCLUSION 

This ethanol-production study on waxy grain sorghum varieties 
demonstrated that ethanol yields from waxy sorghums were es-
sentially proportional to their starch contents. Amylose contents 
in the tested waxy sorghum samples were in a low, narrow range 
and had little effect on ethanol yield and fermentation efficiency. 
Ethanol yields from the tested waxy grain sorghums were around 
2.8 gallons/bushel, which is similar to that reported for corn. The 
fermentation efficiency was greatly affected by FAN content in 
waxy sorghums, which had a strong positive linear correlation 
with early-stage (the first 30–36 hr) fermentation efficiency. Tan-
nins were found in most of the tested waxy sorghums and had 
negative effects on ethanol yield and fermentation efficiency. 
DDGS from waxy sorghums has higher protein but lower starch 
contents, implying better quality as animal feed. 
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