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Abstract

The aim of this study was to employ whey proteins isolate (WPI) and carboxymethylcelulose
(CMC) as stabilizers in beverage production and to evaluate viscosity of the products. Three
beverages were formulated using 6% WPI combined with three different concentrations of CMC
(0.1, 0.5, and 1%). The combination of 6% WPI/1.0% CMC was selected and added to three
different ratios of pure orange juice (50:50 “T1,” 40:60 ”T2,” and 15:85 ”T3”). The apparent
viscosity decreased as shear rate and temperature increased. Additionally, the apparent viscosity
for the same treatment at certain shear rate/same temperature increased after storage. In addition,
an adaptive neuro-fuzzy inference system (ANFIS) was used to model and identify the viscosity
of the resulted beverages. Experimental validation runs were conducted to compare the measured
values and the predicted ones. ANFIS models achieved an average prediction error of viscosity
of only 9%. It is believed that this approach can be applied to predict many other parameters and
properties in beverage industry.

KEYWORDS: beverage formulations, whey protein isolate (WPI), carboxymethylcellulose (CMC),
apparent viscosity, fuzzy modeling
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1. INTRODUCTION 
 

The dairy industry produces large amounts of whey as a by-product of the cheese 
industry. Most of whey protein is lost in the drainage without any benefit (Morr 
and Foegeding, 1990). The environmental pollution and high costs of disposing 
whey encouraged scientists to explore methods to utilize it in the food industry. 
Also, the high nutritional value (Damodoran, 1996) and low cost of whey make it 
an excellent food component (Dickinson, 1997).  
 Several types of proteins are used as emulsifiers in foods since they have a 
high proportion of non-polar groups and surface active properties (Damodoran, 
1996). Whey protein is one of the most important proteins that have the capability 
to stabilize emulsions (Dickinson, 1997; McClements, 1999). Whey proteins are 
the soluble proteins in the milk after the precipitations of the caseins at pH 4.6 and 
20 ºC (Dallgleish, 1996). Whey proteins form about 20% of total milk proteins 
and are composed mainly of β-lactoglobulin (~66%) and α-lactalbumin (~13%) 
(Kinsella, 1984). The ability of whey proteins to form stable emulsions depends 
on several factors including pH, and temperature (Kinsella, 1984; Dallgleish, 
1996; Singh and Ye, 2000). Because of their ability to adsorb at the oil-water 
interface and their good solubility, whey proteins are considered good stabilizer 
(Girard et al., 2002). A study investigated the effect of using other types of 
protein in beverage production such as using soy protein. It was reported that the 
addition of soy protein imparted significant beverage stability with a good 
nutritional value. Nonetheless, this system experienced a slight degree of 
bitterness (Beverage Marketing Corporation of New York, 2005). 
 The gums are polysaccharides classified according to their origin (Igoe, 
1982). The hydrocolloids (gums) have the ability to control both the rheology and 
texture throughout the stabilization of emulsions, suspensions, foams and starch 
gelatinization (Rosell et al., 2001). Carboxymethylcellulose (CMC) is anionic 
polysaccharides that come from cellulose. It has a pKa value of about 4.0 and can 
solublise whey at an acidic condition by acidification through the formation of 
insoluble complex (Hidlago and Hansen, 1969; Igoe, 1982). This polysaccharide 
is widely used in the beverage industry because it is inexpensive and has the 
ability to form complexes with whey proteins because of its anionic properties. 
Interaction between CMC and whey proteins located at the droplet surface of the 
emulsions influences the creaming behavior of the emulsions and stabilizes the 
emulsion through adsorption of the secondary layer of the CMC (Dickinson, 
1998). Some studies investigated the emulsifying properties of WPI/CMC 
complex (Girard et al., 2002) in a pure system but not in formulating a new 
beverage product.  

Fuzzy logic and fuzzy inference system (FIS) is an effective technique for 
the identification and modeling of complex nonlinear systems. Fuzzy logic is 
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particularly attractive due to its ability to solve problems in the absence of 
accurate mathematical models (Zadeh, 1965; Zadeh, 1973; Kasabov, 1998). The 
predictions of properties of the resulted beverage viscosity could be considered as 
a complex system, so using the conventional technology to model these property 
results in significant discrepancies between simulation results and experimental 
data. Thus, this complex nonlinear system fits within the realm of neuro-fuzzy 
techniques (Jang and Sun, 1995; Kosko, 1992; Yamaguchi et al, 1991). 
 Modeling and identification of food properties and processing has been the 
subject of many researchers in the food engineering field. (Perrot et al., 2003) 
presented a hybrid approach based on fuzzy logic and genetic algorithms to 
control a crossflow microfiltration pilot plant. The results of simulations and pilot 
tests showed that it becomes possible to impose dynamics to the process that leads 
to maintain the state variable at a given reference. Tsourveloudis and Kiralakis 
(2002) applied a rotary drying process to olive stones. They described and 
modeled the process using fuzzy and neuro-fuzzy techniques based on available 
expertise and knowledge for a given, industrial size, rotary dryer. They also used 
ANFIS controller based on data taken from an empirical model of the dryer under 
study. Samhouri, Abu Ghoush and Herald (2007) found that the neuro-fuzzy 
modeling technique (i.e., ANFIS) can be used to achieve very satisfactory 
prediction accuracy (about 98%) in a model color mayonnaise system. Also, very 
satisfactory prediction accuracy (about 96%) was achieved by applying neuro-
fuzzy modeling technique (i.e., ANFIS) in predicting the emulsion stability and 
viscosity of a gum- protein emulsifier in a model mayonnaise system (Abu 
Ghoush, Samhouri, Al Holy and Herald, 2008).  

The main motivation behind this work was to utilize the functional and 
dietary benefits of whey in making nutritional and good quality beverage. Both, 
processors and consumers have demanded the use of disposable whey in such 
products (Damianou et al., 2006). Therefore, the aims of this research were to 
take the advantage of the WPI/CMC interaction, formulate a beverage with 
certain properties, evaluate the beverage viscosity and construct a prediction 
model for the beverages viscosity using fuzzy modeling that can be used as a tool 
by the food processors to produce a high quality beverage product.   

 
2. MATERIALS AND METHODS 
 
2.1 Proteins, Polysaccharides 
 
Whey protein isolate (WPI) was obtained from Aria food ingredients (Amba-
Denmark, LACPRODAN® DI-9224, Denamark) and carboxymethylcellulose 
(CMC) was obtained from TIC-Gums (Belcamp, MD, USA).  
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2.2 Stages of the Study 
 
Experimental design of this research was divided into two main stages: 

 
2.2.1 Formulation and Evaluation of Emulsions  
 
Preparation of Emulsions 
 
Three solution combinations formulated with 6%WPI (preliminary study showed 
that it exhibited the highest solubility performance) combined with three different 
concentrations of CMC (0.1, 0.5, and 1%) and replicated three times. A total of 9 
batches of solutions were produced in random order. Each batch was approxi-
mately 1 L. Solution combinations were immediately bottled, capped, and placed 
into refrigerated storage after production. These combinations were rehydrated in 
deionized water for 1 h and stored at 4 º C for 24 h. All solutions were adjusted to 
pH 4.8. The whey protein isolate/CMC complexes were prepared according to the 
process patented by Chen et al. (1989). 
 
Emulsions Evaluations 
 
Emulsion activity index (EAI), and emulsion Stability index (ESI) for all the 
above combinations were determined by using a turbidimeteric method developed 
by (Pearce and Kinsella, 1978). The highest EAI and ESI from these 
combinations were selected for further beverage formulations. This test was used 
to evaluate the stability and the degree of interaction between the CMC and whey 
protein isolate at selected concentrations.  
 
2.2.2 Formulation and Evaluation of Beverage  
 
Beverage Formulations  
 
Beverage formulations (Table 1) were developed using laboratory-scale trials. 
Production of the beverage was performed according to the processing procedure 
developed during laboratory-scale trials (Figure 1). Three beverage treatments 
formulated with 6%WPI, and 1.0% CMC. This combination exhibited the highest 
EAI and ESI. WPI-CMC was added to three different ratios of pure orange Juice ( 
“T1” 50:50, “T2”, 40: 60, and “T3” 15: 85). The orange juice without 
6%WPI/1.0% CMC served as a control. The experiments were replicated three 
times. A total of 12 batches of beverages were produced in random order, each 
batch was approximately 1L in size. Beverages were immediately bottled, capped, 
and placed into refrigerated storage at 4 oC after production. The beverage with 
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15: 85 was excluded from the study since a preliminary sensory evaluation 
indicated that the content of this product precipitated during storage.  

Prehydration of WPI and CMC in a small portion of water, with good 
agitation combined with heat treatment at 80 °C for 30 s resulted in complete 
mixing without lumping in a relatively short period of time. This temperature was 
used to minimize denaturation of the heat-sensitive whey proteins. Themlij et al. 
(2004) reported that the whey protein denaturation was delayed until a 
temperature of 87 °C.   

  
Chemical and Microbiological Properties: 
 
CMC/WPI beverages were stored immediately after production for 8 weeks at 5 
°C. Product pH was measured using a pH meter (model 744, CH-9101 Herisau, 
Switzerland). Triplicate measurements were taken for all samples. Total aerobic 
plate count was determined according to standard pour plate method (Speck, 
1979) on plate count agar (Standard Plate Count Agar, Conda Laboratories, S.A., 
Spain) incubated at 37 °C for 48 h. Coliform count was determined using Violet 
Red Bile Agar and Eosin Methylene blue agar (Conda Laboratories, S.A., Spain) 
incubated at 37 °C for 24 h, respectively.  
 
Rheological Properties: 
 
Rheological measurements of the developed beverage samples were determined 
using a Brookfield viscometer (Model LVDV-E, Brookfield Laboratories, 
Middlebooro, MA, USA). The equipment operates at a rotor speed range 0.3-200 
rpm. Shear rate equation was obtained from manufacturer’s manual as follows: 

N22.0
.
=γ ……………………………………………(equation 1) 

Where : is shear rate in 1/s. 
.
γ

 N: is viscometer spindle rotation speed (rpm). 
The viscometer can be used to construct rheograms by providing apparent 

viscosity and shear stress data. A thermostatically controlled water bath was used 
to maintain the temperature of the beverage constant. Rheological measurements 
were conducted at 8 oC and 24 oC (representing refrigeration and room 
temperatures) at the following rpm values: 100, 60, 50, 30, 20, 12, 10, and 6. The 
measurements were taken immediately after beverage preparation and repeated 
after 8 weeks of storage. Prior to measurements, samples were heated in a water 
bath to reach steady state temperatures of 8 oC and 24 oC to resemble the 
temperatures as the product is consumed. All measurements were obtained in 
triplicate.  
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2.3 Statistical Analysis 
 
A two-way factorial classification in complete randomized design (CRD) was 
used. Data were analyzed using statistical analysis software (version 8.2, SAS 
Institute Inc., Cary, NC). Three batches of beverage were produced for each 
treatment. Analysis of variance (ANOVA) and means separations were calculated 
by the general linear model procedure (Proc GLM). Comparisons among 
treatments were analyzed using Fisher Least Significant Difference (LSD). 
Treatment means were considered significant at P< 0.05.  

 
2.4 Fuzzy Modeling of Output Properties 
 
Neuro-fuzzy is an associative memory system that consists of fuzzy nodes instead 
of simple input and ouput nodes. Neuro-fuzzy uses neural network learning 
functions to refine each part of the fuzzy knowledge separately. Learning in a 
separated network is faster than learning in a whole network. One approach to the 
derivation of a fuzzy rule base is to use the self learning features of artificial 
neural networks, to define the membership function based on input-output data. A 
fuzzy inference system (consisting of rules, fuzzy set membership functions, and 
the defuzzification strategy) are mapped onto a neural network-like architecture.  
 Adaptive neuro-fuzzy inference system (ANFIS) is a fuzzy inference 
system implemented in the framework of an adaptive neural network. By using a 
hybrid learning procedure, ANFIS can construct an input-output mapping based 
on both human-knowledge as fuzzy. If-Then rules and stipulated input-output data 
pairs for neural networks training. ANFIS architecture is shown in Figure 2, 
where x and y are the inputs, f is the output, Ai and A2

n are the input membership 
functions, wi and w2

n are the rules firing strengths. Five network layers are used 
by ANFIS to perform the following fuzzy inference steps: (i) input fuzzification, 
(ii) fuzzy set database construction, (iii) fuzzy rule base construction (iv) decision 
making, and (v) output defuzzification. This is a multi-layered neural network 
architecture where the first layer represents the antecedent fuzzy sets, while the 
consequent fuzzy sets are represented by the middle layers, and the 
defuzzification strategy by the output layer. The nodes which have 'square' shape 
are those containing adaptable parameters, whereas the 'circular' nodes are those 
with fixed parametes.  
 ANFIS is more powerful than the simple fuzzy logic algorithm and neural 
networks, since it provides a method for fuzzy modeling to learn information 
about the data set, in order to compute the membership function parameters that 
best allow the associated fuzzy inference system to track the given input/output 
data (Jang, 1993). ANFIS also employs sugeno-type fuzzy inference system, 
which is a natural and efficient modeling tool, and is suited for modeling non-

 

5

Abughoush et al.: Beverage Viscosity and Fuzzy Modeling

Published by The Berkeley Electronic Press, 2008



linear system by interpolating between multiple linear models. In addition, ANFIS 
is more powerful than neural network system since it is better than all of them in 
convergence rates (running time), average training error, root mean square error, 
and the coefficient of correlation, and it has a built-in ability to validate the 
modeled system. On the other hand, ANFIS is much more complex than the fuzzy 
inference systems, and is not available for all of the fuzzy inference system 
options. It only has a single output, and no rule sharing. In addition, ANFIS 
cannot accept all the customization options that basic fuzzy inference allows. That 
is, no possibility to make our own membership functions and defuzzification 
functions; the ones provided by ANFIS must be used. 
 
ANFIS Modeling of Viscosity 
 
An adaptive neuro-fuzzy inference system (ANFIS) is an architecture which is 
functionally equivalent to a Sugeno-type fuzzy rule base. ANFIS is a method for 
tuning an existing rule base with a learning algorithm based on a collection of 
training data. This allows the rule base to adapt. Training data is used to teach the 
neuro-fuzzy system by adapting its parameters (which in essence are fuzzy set 
membership function parameters) and using a standard neural network algorithm 
which utilizes a gradient search, such that the mean square output error is 
minimized.  
 The architecture of ANFIS, illustrated in Figure 2, has five layers to 
accomplish the tuning process of the fuzzy modeling system. The five layers are: 

1) Layer 1: Every node in this layer is an adaptive node with a node function 
(i.e., membership function). Parameters of membership functions are 
referred to as premise or antecedent parameters.  

2) Layer 2: Every node in this layer is a fixed node, which multiplies the 
incoming signals and sends the product out. Each node represents the 
firing strength of a fuzzy rule. 

3) Layer 3: Every node in this layer is a fixed node which calculates the ratio 
of the one firing strength to the sum of all rules' firing strengths. The 
outputs of this layer are called normalized firing strengths.  

4) Layer 4: Every node in this layer is an adaptive node with a node function 
(i.e., linear combination of input variables). Parameters in this layer are 
referred to as consequent parameters. 

5)   From the ANFIS architecture Layer 5: The single node in this layer is a 
fixed node that computes the overall output as the summation of all 
incoming signals, shown in Figure 2, it is observed that given the values of 
premise parameters, the overall output can be expressed as a linear 
combination of the consequent parameters. 

     ANFIS applies two techniques in updating parameters. For premise 
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parameters that define membership functions, ANFIS employs gradient descent 
back-propagation neural networks to fine-tune them. For consequent parameters 
that define the coefficient of each output equation, ANFIS uses that least squares 
method to identify them. This approach is called the hybrid learning method. 
More specifically, in the forward pass of the hybrid learning method, functional 
signals go forward until layer 4 and the consequent parameters are identified by 
the least square estimate. In the backward pass, the error rates propagate 
backward and the premise parameters are updated by the gradient descent.  
   ANFIS modeling and prediction of the viscosity output starts by obtaining 
a data set (input-output data points) and dividing it into training and validating 
data sets. Each input/output pair contains four inputs (i.e., time, shear rate, 
temperature, and treatment) and one output (i.e., viscosity). The training data set 
is used to find the initial premise parameters for the membership functions by 
equally spacing each of the membership functions. A threshold value for error 
between the actual and desired output is determined. The consequent parameters 
are computed using the least squares method. Then, an error for each data pairs is 
found. If this error is larger than the threshold value, the premise parameters are 
updated using the back propagation neural networks. This process is terminated 
when the error becomes less than the threshold value. Then, the testing data points 
are used to compare the model with actual system for validating purposes.  
 
3. RESULTS AND DISCUSSION 
 
3.1 Solution Combinations Evaluation 
 
The EAI of 6%WPI significantly increased with the addition of 0.1, 0.5, and 1 % 
CMC by 50, 64, and 84 %, respectively (Figure 3). The ESI of 6%WPI 
significantly increased with the addition of 0.1, 0.5, and 1% CMC by 50, 77, and 
97 %, respectively (Figure 4). It is clear that as CMC concentrations increases the 
stability of beverage. This could be due to the formation of a protein-
polysaccharides network. The interaction between CMC and whey proteins 
located at the droplet surface of the emulsions influences the behavior of the 
solutions and stabilizes the emulsion through adsorption of the secondary layer of 
the CMC, thus increasing ESI. WPI improves the surface properties of food 
systems by forming a protective steric barrier around insoluble droplets. At the 
same time, CMC improves the steric stabilizing properties by forming a thick 
secondary layer on the outer side of protein. These results are confirmed with the 
results obtained by others (Dickinson 1998; Rosell et al. 2001; Giraard et al. 
2002; and Damianou et al. 2006).  
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3.2 Formulations and Evaluation of Beverages 
 
Chemical and Microbiological Properties 
 
The pH of beverage remained stable for all formulations during the 8-week 
refrigerated storage period. Beverages pH values were 4.70, and 4.63 for T1, and 
T2, respectively.   

Despite the high water amounts, and nutrients contents, the low pH of the 
product prevented growth of microorganisms. Beverages aerobic plat count 
(APC/ml) were 30, and 47 for T1, and T2 treatments, respectively and remained 
stable for all formulations during the 8-week refrigerated storage period. This low 
count is probably spore forming bacteria that does not have the capability to 
germinate under the acidic conditions of the beverage. The coliform count was 
undetectable (<10/ml) for T1, and T2 treatments. This is most likely because of 
relatively high pasteurization temperature (80 °C for 30s) and low pH (~ 4.70) 
that impede the growth of coliform.  

 
Rheological Properties 
 
A power law model that is widely used in theoretical analysis of engineering 
calculations was used to explain the relationship between shear stress and shear 
rate as follows: 
 

nKγτ = ……………………………………………(equation 2) 
 
Where τ: is the shear stress (Pa), K is consistency coefficient, n is the flow 
behavior index. 
 For a power law model, the apparent viscosity can be defined as follows: 
 

1−= n
a Kγμ ……………………………………… (equation 3) 

 
Where μa: is the apparent viscosity in Pa.s. 

A plot of apparent viscosity against shear rate (a gradient of velocity in a 
flowing material. The SI unit of measurement for shear rate is sec-1 ) was obtained 
for each treatment. The plot was fitted to a power function where K and n were 
obtained directly from the power law function. The results for n, K, and R2 are 
shown in Table 2. The results showed that n values were less than one, indicating 
a shear thinning behavior of the beverage samples. For sample T1, the results 
showed that n decreased from 0.652 to 0.620 as temperature increased from 8 to 
24 oC, and K decreased from 0.077 to 0.058 for the same temperature increment. 
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This decrease was due to the decrease in apparent viscosity as temperature 
increased. The sample T2 showed a similar trend with n decreasing from 0.392 to 
0.328 and K decreasing from 0.11 to 0.081 as temperature increased from 8 to 
24oC. These values reflect the nature of shear-thinning fluids. 

Equivalent results for measurement taken after 8 weeks are shown in 
Table 3. Flow behaviour index decreased after 8 weeks. The relationship between 
apparent viscosity and shear rate for formulation T1 and T2 at different 
temperatures is shown in Figure 5. The reduction in apparent viscosity with 
increasing shear rate is most probably due to the structural breakdown of the 
formulations by hydrodynamic forces generated and the increased alignment of 
the constituent molecules, since shearing causes progressive deformation and 
disruption of droplets resulting in less resistance to flow (Alparslan and Hayta, 
2002; Rao, 1999). Obviously, the viscosity increased significantly for all 
temperatures and formulations after 8 weeks and the relationship between 
apparent viscosity and shear rate became less dependent on temperature and 
formulation type. This indicates that viscous behavior of both formulations 
became more stable after 8 weeks probably due to development of cross 
polymerization networks (Figure 6) (Girard et al. 2002; and Damianou et al. 
2006).  

 
ANFIS Modeling  
 
The fuzzy logic toolbox of Matlab 7.0 was used to obtain the results, and to build 
a fuzzy model for the viscosity. Figure 7 shows the training curve for building a 
fuzzy model for viscosity. 160 data points were used for training the system to 
predict the viscosity. 1500 neural nets learning epochs were used to get a low 
error of training (i.e., RMSE = 7.48 or 3 percent of the training data range = 
Maximum – Minimum = 240). A comparison between the actual and ANFIS 
predicted viscosity after training is shown in Figure 8, which shows that the 
system is well-trained to model the actual viscosity. 
 Twenty five data points, which are different and independent from the 
training data, were used to validate the system. The final fuzzy inference system 
that predicts the viscosity is shown in Figure 9. As illustrated in Figure 9, a two 
(Gaussian) type membership functions for each input (4 inputs) resulted in high 
accurate prediction results. 
 
Models Validation 
 
The ANFIS prediction model for viscosity was validated by selecting a certain 
number of data points (i.e., 25 points), different from the other 160 points used for 
ANFIS training. Each validation data point (i.e., time, shear rate, temperature, and 
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treatment) was fed into the system, and then the predicted properties (i.e., 
viscosity) were compared to the actual values of the measured viscosity. The 
average percent errors in the modeling of viscosity was 9% achieving an accuracy 
of viscosity prediction of 91%. Table 4 shows the data points used in system's 
validation along with the actual and predicted viscosity values, and the percent 
errors in the predictions. This table shows that the ANFIS predicted values are a 
close match of the actual ones.  

 
4. CONCLUSIONS 
 
High quality and shelf stable beverages were formulated with 6% WPI/1% CMC 
and pure orange juice combined at 50:50 and 40:60 ratios, respectively. The 
apparent viscosity decreased as shear rate and temperature increased. 
Additionally, the apparent viscosity for the same treatment at certain shear 
rate/same temperature increased after storage. ANFIS models achieved an average 
prediction error of viscosity of only 9%. The present study shows that ANFIS is a 
technique that can be used efficiently to predict the food properties. It is believed 
that this approach can be applied to predict many other parameters and properties 
in food industry. 
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