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Abstract

The aim of this study was to employ iota-carrageenan (IC) and wheat protein (WP) as an emulsifier alternative to egg yolk in a model
mayonnaise system. A solution of 0.1% IC and 4% WP was prepared and used as an emulsifier in five different mayonnaise formulas. All
mayonnaise treatments were evaluated and compared based on emulsion stability and viscosity at 4, 23, and 40 �C. In addition, an adap-
tive neuro-fuzzy inference system (ANFIS) was used to model and identify the properties of the resulted mayonnaise, with the temper-
ature and ratios. Experimental validation runs were conducted to compare the measured values and the predicted ones. The mayonnaise
formulated with the 25:75 (E: CP) at 4 �C was the highest stable system. The maximum viscosity was observed in the 100% egg yolk. The
comparison showed that the adoption of this neuro-fuzzy modeling technique (i.e., ANFIS) achieved a very satisfactory prediction accu-
racy of about 96%.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Proteins and polysaccharides are present together in
many food emulsion products. The presence of polysaccha-
rides in protein stabilized emulsions can have variable effect
on stability and rheological properties (Dickinson &
Euston, 1991; Dickinson & Pawlowsky, 1996). Hydro-
colloids are added to increase the stability of the interfacial
film separating the droplets that prevent coalescence
(Buffo, Reineccius, & Oehlert, 2001). Carrageenans are
commonly used as stabilizers, thickners and gelling agents
in milk based products. They are sulphated polysaccha-
rides, and various forms of carrageenan mainly differ in
the number and position of the sulphate groups on the
polygalactose backbone (Enriquesz & Flick, 1989). Kon-
togiorgos, Biliaderis, Kiosseoglou, and Doxastakis (2004)
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demonstrated that cereal b-glucans could be used as stabi-
lizers in model salad dressings. Worrasinchai, Suphantha-
rika, Pinjai, and Jamnong (2006) used spent brewer’s
yeast b-glucan as a fat alternative in mayonnaise
production.

During the formation of an emulsion, oil droplets are
dispersed into a continuous phase. The oil droplets tend
to flocculate due to attractive forces. One of the keys in
preparing a stable mayonnaise is to form small oil droplets
in a continuous water phase with sufficiently high viscosity
to prevent coalescence of the oil droplets (Wendin, Aaby,
Ellkejair, & Solheim, 1997, 1999). The wheat industry has
done little to promote the use of wheat protein in emulsions
productions. Proteins improve the surface properties of an
emulsion by forming a protective steric barrier around the
oil droplets (Dickinson, 1997; Prakash, Joseph, & Mang-
ino, 1990). Several types of proteins are used as emulsifiers
in foods since they have a high proportion of nonpolar
group and surface active (Damodoran, 1996). Wheat pro-
tein can be an alternative and compete with other proteins
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in emulsion production such as casein and soy proteins due
to its functional and dietary benefits.

Fuzzy logic and fuzzy inference system (FIS) is an effec-
tive technique for the identification and modeling of com-
plex nonlinear systems. Fuzzy logic is particularly
attractive due to its ability to solve problems in the absence
of accurate mathematical models. The prediction of prop-
erties of the resulted mayonnaise (e.g., viscosity, stability)
could be considered as a complex system, so using the con-
ventional technology to model these properties results in
significant discrepancies between simulation results and
experimental data. Thus, this complex nonlinear system fits
within the realm of neuro-fuzzy techniques.

The application of a neuro-fuzzy inference system to
prediction and modeling is a novel approach that over-
comes limitations of a fuzzy inference system such as the
dependency on the expert for fuzzy rule generation and
design of the nonadaptive fuzzy set.

Modeling and identification of food properties and
processing has been the subject of many researchers in
the food engineering field. Perrot, Me, Trystram, Trich-
ard, and Deloux (2003) presented a hybrid approach
based on fuzzy logic and genetic algorithms to control
a crossflow microfiltration pilot plant. The results of sim-
ulations and pilot tests showed that it becomes possible
to impose dynamics to the process that leads to maintain
the state variable at a given reference. Tsourveloudis and
Kiralakis (2002) applied a rotary drying process to olive
stones. They described and modeled the process using
fuzzy and neuro-fuzzy techniques based on available
expertise and knowledge for a given, industrial size,
rotary dryer. They also used ANFIS controller based
on data taken from an empirical model of the dryer
under study.

Kavdir and Guyer (2003) introduced an apple grading
system using fuzzy logic model. Fuzzy logic was applied
as a decision-making support to grade apples. Grading
results obtained from fuzzy logic showed 89% general
agreement with results obtained from human expert, pro-
viding good flexibility in reflecting the expert’s expectations
and grading standards into the results.
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In fact, there is no published data in the literature on
application of iota-carrageenan (IC) and wheat protein
(WP) to partially replace egg yolk in mayonnaise produc-
tion. Therefore, the gum–protein interaction may play a
role in the mayonnaise compared to the single contribution
of the individual polymer.

The main motivation behind this work is that consumers
have demanded that the use of egg yolks be reduced
because of the inherent cholesterol. Therefore, the aim of
this research was to take advantage of the gum–protein
interaction, formulate a mayonnaise with similar character-
istics as mayonnaise prepared with egg yolk, and construct
a prediction model for the mayonnaise properties using
fuzzy modeling that can be used as a tool by the food pro-
cessors to produce a high quality mayonnaise product.

2. Materials and methods

2.1. Mayonnaise production

Five mayonnaise formulations were prepared and physi-
cal evaluations were performed. Four of the mayonnaise
formulations contained an emulsifier prepared from 1%
iota-carrageenan: 4% wheat protein (Midsol WPI 2100 from
Midwest Grain, Inc., DWP) mixture. A mayonnaise with a
traditional egg yolk formulation was used as a control. The
basic formulations included 9 mL vinegar, 0. 94 g salt, 1.3 g
sugar and 69 mL corn oil and 10 g egg yolk or mixture as
given in Fig. 1. The following includes the different ratios
of (egg yolk: gum–protein) mixtures that were used as emul-
sifiers in the mayonnaise formulations: 100:0 egg yolk (E):
1% iota-carrageenan + 4% wheat protein (CP)

75:25 egg yolk (E): 1% iota-carrageenan + 4% wheat
protein (CP)
50:50 egg yolk (E): 1% iota-carrageenan + 4% wheat
protein (CP)
25:75 egg yolk (E): 1% iota-carrageenan + 4% wheat
protein (CP)
0:100 egg yolk (E): 1% iota-carrageenan + 4% wheat
protein (CP)
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2.2. Mayonnaise evaluation

Two main properties of the resulted mayonnaise (i.e.,
viscosity and stability) were measured and evaluated. The
emulsion stability of the mayonnaise stored at different
temperatures was evaluated every 24 h. Daily readings were
taken until the emulsion broke (oil separation). All samples
were assayed in triplicate. The emulsion viscosity was mea-
sured using a Bohlin VOR Rheometer (Bohlin instrument,
USA) equipped with a cone plate geometry. Triplicate sam-
ple was taken from each mayonnaise type that is stored at
different temperatures (4, 23, and 40 �C). The viscosity of
the complex was determined at a frequency of 0.5 Hz
within a shear rate range of 10–100 s�1.

2.3. Statistical analysis

A factorial classification in complete randomized design
(CRD) was adopted in this paper. Data were analyzed using
statistical analysis software (version 8.2, SAS Institute Inc.,
Cary, NC). Three batches of mayonnaise were produced for
each treatment. Analysis of variance (ANOVA) and means
separations were calculated by the general linear model pro-
cedure (Proc GLM). Comparisons among treatments were
analyzed using fisher least significant difference (LSD).
Treatment means were considered significant at P < 0.05.

2.4. Fuzzy modeling of output properties

One way to represent data and knowledge, closer to
human-like thinking, is to use fuzzy rules instead of exact
rules. Fuzzy systems are rule-based expert systems based
on fuzzy rules and fuzzy inference. A fuzzy inference sys-
tem can be viewed as a real-time expert system used to
model and utilize a human operator’s experience or process
engineer’s knowledge. A fuzzy inference system can be con-
Fig. 2. General adaptive neuro-fuzzy int
sidered to be composed of five functional blocks described
as follows:

(1) A rule base containing the fuzzy if-then rules.
(2) A database which defines the membership functions

of the fuzzy sets used in the fuzzy rules.
(3) A decision-making unit which performs the inference

operations on the rules.
(4) A fuzzification interface which transforms the numer-

ical input variables into fuzzy variables with linguistic
labels.

(5) A defuzzification interface which transforms the
fuzzy results of the knowledge base in combination
with the results of the decision-making unit into a
numerical output variables.

Figs. 2 and 3 illustrated that the prediction of properties
of the resulted mayonnaise (i.e., viscosity, stability) is a
nonlinear and complex process. In fact, these properties
could be nicely modeled as fuzzy properties. Fuzzy logic
can model nonlinear functions of arbitrary complexity. It
provides an alternative solution to nonlinear modeling
because it is closer to the real world. Nonlinearity and com-
plexity is handled by rules, membership functions, and the
inference process which results in improved performance,
simpler implementation, and reduced design costs.

Neuro-fuzzy is an associative memory system that con-
sists of fuzzy nodes instead of simple input and output
nodes. Neuro-fuzzy uses neural network learning functions
to refine each part of the fuzzy knowledge separately.
Learning in a separated network is faster than learning in
a whole network.

One approach to the derivation of a fuzzy rule base is to
use the self learning features of artificial neural networks,
to define the membership function based on input–output
data. A fuzzy inference system (consisting of rules, fuzzy
erface system (ANFIS) architecture.
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set membership functions, and the defuzzification strategy)
are mapped onto a neural network-like architecture.

Adaptive neuro-fuzzy inference system (ANFIS) is a
fuzzy inference system implemented in the framework of
an adaptive neural network. By using a hybrid learning
procedure, ANFIS can construct an input–output map-
ping based on both human-knowledge as fuzzy If-Then
rules and stipulated input–output data pairs for neural
networks training. ANFIS architecture is shown in
Fig. 2, where x and y are the inputs, f is the output, Ai

and A2
n are the input membership functions, wi and w2

n

are the rules firing strengths. Five network layers are used
by ANFIS to perform the following fuzzy inference steps:
(i) input fuzzification, (ii) fuzzy set database construction,
(iii) fuzzy rule base construction (iv) decision making, and
(v) output defuzzification. This is a multi-layered neural
network architecture where the first layer represents the
antecedent fuzzy sets, while the consequent fuzzy sets
are represented by the middle layers, and the defuzzifica-
tion strategy by the output layer. The nodes which have
‘square’ shape are those containing adaptable parameters,
whereas the ‘circular’ nodes are those with fixed
parameters.

ANFIS is more powerful than the simple fuzzy logic
algorithm and neural networks, since it provides a method
for fuzzy modeling to learn information about the data
set, in order to compute the membership function param-
eters that best allow the associated fuzzy inference system
to track the given input/output data (Jang, 1993). In the
next section, the application of ANFIS to model and pre-
dict the output properties for the mayonnaise system, is
discussed.
2.5. ANFIS modeling of mayonnaise properties

An adaptive neuro-fuzzy inference system (ANFIS) is
an architecture which is functionally equivalent to a
Sugeno-type fuzzy rule base. ANFIS is a method for tun-
ing an existing rule base with a learning algorithm based
on a collection of training data. This allows the rule base
to adapt. Training data is used to teach the neuro-fuzzy
system by adapting its parameters (which in essence are
fuzzy set membership function parameters) and using a
standard neural network algorithm which utilizes a gradi-
ent search, such that the mean square output error is
minimized.

The architecture of ANFIS, illustrated in Fig. 2, has five
layers to accomplish the tuning process of the fuzzy mod-
eling system. The five layers are:

(1) Layer 1: Every node in this layer is an adaptive node
with a node function (i.e., membership function).
Parameters of membership functions are referred to
as premise or antecedent parameters.

(2) Layer 2: Every node in this layer is a fixed node,
which multiplies the incoming signals and sends the
product out. Each node represents the firing strength
of a fuzzy rule.

(3) Layer 3: Every node in this layer is a fixed node which
calculates the ratio of the one firing strength to the
sum of all rules’ firing strengths. The outputs of this
layer are called normalized firing strengths.

(4) Layer 4: Every node in this layer is an adaptive node
with a node function (i.e., linear combination of input
variables). Parameters in this layer are referred to as
consequent parameters.

(5) Layer 5: The single node in this layer is a fixed node
that computes the overall output as the summation of
all incoming signals.

From the ANFIS architecture, shown in Fig. 2, it is
observed that given the values of premise parameters, the
overall output can be expressed as a linear combination
of the consequent parameters.

ANFIS applies two techniques in updating parameters.
For premise parameters that define membership functions,
ANFIS employs gradient descent back-propagation neural
networks to fine-tune them. For consequent parameters
that define the coefficient of each output equation, ANFIS
uses that least squares method to identify them. This
approach is called the hybrid learning method. More spe-
cifically, in the forward pass of the hybrid learning method,
functional signals go forward until layer 4 and the conse-
quent parameters are identified by the least square esti-
mate. In the backward pass, the error rates propagate
backward and the premise parameters are updated by the
gradient descent. Table 1 summarized the activities and
adaptive and fixed parameters in each pass.

ANFIS modeling and prediction of output properties of
mayonnaise system starts by obtaining a data set (input–



Table 2
ANFIS training data points for modeling mayonnaise properties

Temperature
(C�)

Egg yolk
concentration
(%)

Solution
concentration
(%)

Viscosity
(Pa s)

Stability
(days)

40 100 0 1.95 2
23 100 0 2.8 2
4 100 0 8.9 9
40 75 25 2.21 4
23 75 25 2.5 4
4 75 25 4.18 17
40 50 50 2 3
23 50 50 2 6
4 50 50 6.6 10
40 25 75 1.9 5
23 25 75 2.085 5
4 25 75 8.9 25
40 0 100 1 0.042
23 0 100 1.21 0.042
4 0 100 1.1 0.042
40 100 0 1.9 2
23 100 0 2.83 2
4 100 0 8.6 8
40 75 25 2.1 4
40 75 25 2.305 4
23 75 25 2.6 4
4 75 25 4 18
40 50 50 1.9 3
40 50 50 1.895 3
23 50 50 2.15 5
4 50 50 7 9
40 25 75 1.95 4
23 25 75 2 5
4 75 25 9 24
40 0 100 1.05 0.042
23 0 100 1.1 0.042
4 0 100 1.2 0.042
40 100 0 2 2
4 100 0 8.5 9
23 100 0 2.76 2
40 100 0 1.95 2
23 100 0 2.8 2
4 100 0 8.9 9
40 75 25 2.21 4
23 75 25 2.5 4
4 75 25 4.18 17
40 50 50 2 3
23 50 50 2 6
4 50 50 6.6 10
40 25 75 1.9 5
23 25 75 2.085 5
4 25 75 8.9 25
40 0 100 1 0.042
23 0 100 1.21 0.042
4 0 100 1.1 0.042

Table 1
Two passes in the hybrid procedure for ANFIS

ANFIS forward pass ANFIS backward pass

Premise (antecedent)
parameters
(Fuzzy membership
parameters) Fuzzy
rule IF part

Fixed (Do not change
during fuzzy output
calculation)

Neural gradient
descent
(Errors are back
propagated and used
to adapt the premise
parameters)

Consequent
parameters
(Defuzzification
parameters fuzzy
rule then par)t

Least squares
estimate (Crisp
output are evaluated
by defuzzification
process using least
squares of linear
combination of input
variables)

Fixed
(Do not change during
error propagation)

Signals
(Output values of
the pass)

Node outputs (Fuzzy
modeled values)

Error rates
(Difference between
modeled and actual
outputs)
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output data points) and dividing it into training and vali-
dating data sets. Table 2 gives the training data points
(i.e., data base) used in this work to train ANFIS to iden-
tify or model the viscosity and stability properties of may-
onnaise system. Each input/output pair contains three
inputs (i.e., storage temperature (T), egg yolk concentra-
tion (E), and solution concentration (CP)) and one output
(i.e., on of the mayonnaise properties). The training data
set is used to find the initial premise parameters for the
membership functions by equally spacing each of the mem-
bership functions. A threshold value for error between the
actual and desired output is determined. The consequent
parameters are computed using the least squares method.
Then, an error for each data pairs is found. If this error
is larger than the threshold value, the premise parameters
are updated using the back-propagation neural networks.
This process is terminated when the error becomes less
than the threshold value. Then, the testing data points
are used to compare the model with actual system for val-
idating purposes. Fig. 3 shows the ANFIS training and
modeling process.

The overall property output (f) of ANFIS given in
Fig. 2, can be written as

Y ¼ ðw1T ÞP 1
1 þ ðw1EÞP 1

2 þ ðw1CP ÞP 1
3 þ ðw1ÞP 1

0 þ . . .

þ ðwn2 T ÞP n2

1 þ ðwn2 EÞP n2

2 þ ðwn2 CP ÞP 1
3 þ ðwn2ÞP n2

0 ð1Þ

The full equation has (5n2) terms, where n2 is the num-
ber of input implications. In this model of mayonnaise
properties of Eq. (1), (T,E,CP) are the input parameters
(i.e., storage temperature, egg yolk, and solution), and
w1–wn2 are the normalized firing strengths of fuzzy rules.
The consequent parameters of the fuzzy membership func-
tions {P 1

1; . . . :: ; P n2
0 , are tuned off-line using linear least

square method, and then updated on-line by a gradient des-
cent back-propagation neural networks.
3. Results and discussion

3.1. Mayonnaise stability

Mayonnaise stability was determined by monitoring oil
separation and texture attributes. The emulsion stability
(i.e., shelf-life) of different mayonnaise formulations is pre-
sented in Fig. 4. The emulsion stability increased signifi-
cantly (more than 2 folds) for the mayonnaise formulated
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Fig. 4. Mayonnaise stability (shelf-life) of five mayonnaise formulations
at three storage temperatures (4, 23, and 40 �C). (E: egg yolk, and CP:
carrageenan and wheat protein combination). Bars with the same letters
are not significantly different at P < 0.5. Fig. 6. Comparison of emulsion stability, and viscosity of two mayon-

naise formulations at day zero. (E: egg yolk, and CP: carrageenan and
wheat protein combination).

Fig. 7. Comparison of emulsion stability and viscosity of two mayonnaise
formulations stored for three days at 23 �C. (E: egg yolk, and CP:
carrageenan and wheat protein combination).
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with 25:75 (egg yolk: 0.1% iota-carrageenan + 4% wheat
protein, E:CP) at 4 �C compared to the 100:0 (E:CP) treat-
ment. This result suggests that this treatment may possess
better polysaccharides–protein interaction in stabilizing
mayonnaise formulation and can have variable effect on
stability and rheological properties. Also, this result con-
firms the previous finding that addition of yeast b-glucan
can efficiently stabilize the oil-in-water emulsion (Konto-
giorgos et al., 2004). Thus, the oil droplets were kept apart
by the particulate 0.1% iota-carrageenan + 4% wheat pro-
tein and coalescence became less likely than that of the
100% egg yolk during storage at various temperatures.
Also, 75:25 and 50:50 (E:CP) treatments exhibited a better
stability compared to 100:0 (E:CP) while 0:100 (E:CP)
treatment exhibited a very poor emulsion stability.

The emulsion stability decreased significantly for the
mayonnaise stored at higher temperatures. This could be
due to the very rapid flocculation and/or coalescence of small
droplets occurred with increasing storage temperatures.

3.2. Mayonnaise viscosity

The emulsion viscosity of different mayonnaise formula-
tions is presented in Fig. 5. The viscosity significantly
increased as temperature of storage decreased. A signifi-
cantly higher mayonnaise viscosity was obtained from the
100:0 formulation. This result means that the highest vis-
cosity was obtained for mayonnaise formulated from
100% egg yolk. At the same time, the viscosity decreased
cb c
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Fig. 5. Viscosity of five mayonnaise formulations at three storage
temperatures (4, 23, and 40 �C). (E: egg yolk, and CP: carrageenan and
wheat protein combination). Bars with the same letters are not signifi-
cantly different at P < 0.5.
significantly as the percentage of egg yolk decreased by
25%. There was no significant difference in mayonnaise vis-
cosity between 50:50 or 25:75 at each storage temperature.
The emulsion viscosity decreased significantly for the may-
onnaise stored at higher temperatures. This could be due to
the very rapid flocculation and/or coalescence of small
droplets occurred with increasing storage temperatures.
Proteins and gums interactions affect both the stability
and the viscosity of mayonnaise by forming a protective
steric barrier around the oil droplets (Dickinson, 1997).
A general comparison of emulsion stability, and viscosity
of two mayonnaise formulations stored for 3 days at
23 �C can be seen in Figs. 6 and 7.

3.3. ANFIS modeling results

The fuzzy logic toolbox of Matlab 6.1 was used to
obtain the results. A total of 27 nodes and 8 fuzzy rules
were used to build the fuzzy systems for modeling the may-
onnaise properties.

3.3.1. A model for viscosity
The neural network training for building a fuzzy model

for viscosity used 50 training data points, given in Table 2,



Table 3
Validation data points

Temperature
(C�)

Egg yolk
concentration
(%)

Solution
concentration
(%)

Viscosity
(Pa s)

Stability
(days)

40 100 0 1.95 2
23 100 0 2.9 2
4 100 0 8.7 9
40 75 25 2.4 4
23 75 25 2.4 4
4 75 25 4.26 17.5
4 50 50 6.7 10
40 25 75 2 4
4 25 75 8.85 24.5
23 0 100 1.1 0.042
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and 50 learning epochs. Fig. 8 shows the training curve of
ANFIS with root mean square error (RMSE) of 0.345 (i.e.,
almost 4%). A comparison between the actual and ANFIS
predicted viscosity after training is shown in Fig. 9, which
shows that the system is well-trained to model the actual
viscosity.

Ten points, which are different from the training data,
were used to validate the system. These validation data
points are given in Table 3. The ANFIS-predicted viscosity
(i.e., the viscosity model) is shown in Fig. 10 as a surface
plot of viscosity as a function of the egg yolk and solution
concentrations. This surface plot shows that the relation-
ships between the (E, CP) inputs and the viscosity of the
resulted mayonnaise has a complex and nonlinear nature,
and this is the main reason of using the adaptive neuro-
fuzzy system to model this property. Given any two values
for the inputs (i.e., egg yolk and solution concentrations) in
their training ranges, a value for the viscosity can be com-
puted from the model or surface plot of Fig. 10. The com-
plexity of this relationship could be also observed in Fig. 5.
The viscosity cannot be modeled or predicted by using tra-
ditional methods when the concentrations change. This
nonlinearity gets even worse when the third variable (i.e.,
the temperature) changes. Therefore, the model of Fig. 10
is necessary to predict the viscosity for changing concentra-
tions and temperature.
Fig. 8. ANFIS training curve

Fig. 9. Actual and ANFIS-pre
Different types of membership functions (MF) of the
inputs and output were tested to train the ANFIS predic-
tion system. A two (Bell-shaped) type MF for each input
resulted in high accurate modeling results and minimum
training and validation errors. The final (MF) were tuned
and updated by the ANFIS model to achieve a good map-
ping of the input variables to the viscosity output. The
shape of MF is considered a key parameter in tuning the
ANFIS. The (MF) shape determines the location of MF
parameters, and in turn determines the degree of member-
ship for the input values (i.e., fuzzified inputs), and refer-
ring to th previous discussion in Section 2.5, the fuzzy
for the viscosity model.

dicted values of viscosity.
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rules premise and antecedent parameters are directly
affected by the (MF) shape and parameters. Consequently,
the effect of changing the (MF) shape will propagate to
reach all the ANFIS layers, and will have a considerable
effect on the final output of the ANFIS network. More
details about how ANFIS works could be found in (Jang,
1993).

3.3.2. A model for stability

Fuzzy modeling for stability using neural networks used
50 training data, given in Table 2, and 150 training epochs
with (RMSE) of 0.513 (i.e., almost 2%). Ten data points,
given in Table 3, which are different from the training data,
were used to validate the system. The ANFIS-predicted
stability is shown in Fig. 11 as a surface plot as a function
of the egg yolk and solution concentrations. This plot is
considered a nonlinear model of the relationship between
(E, CP) and the stability.
Fig. 10. A surface plot (fuzzy model) of viscosity

Fig. 11. A surface plot (fuzzy model) of stability
A two (Bell-shaped) type membership functions (MF)
for each input resulted in high accurate prediction results
and minimum training and validation errors.

3.4. Models validation

The ANFIS prediction models for mayonnaise proper-
ties were validated by selecting a certain number of data
points, different from the other 50 points used for ANFIS
training. Each validation data point (i.e., T, E, and CP),
given in Table 3, was fed into the system, and then the pre-
dicted properties (i.e., V, S, L, and Y) were plotted with the
actual values of these properties. The average percent
errors in the modeling of properties were as follows: 5%
for viscosity, 8% for stability. Figs. 12 and 13 show the dia-
grams of the actual and predicted properties values. These
figures show that the ANFIS predicted values are a close
match of the actual ones.
versus egg yolk and solution concentrations.

versus egg yolk and solution concentrations.
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Fig. 12. Validation diagram of ANFIS-based viscosity model.
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Fig. 13. Validation diagram of ANFIS-based stability model.
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4. Conclusions

In this paper, a mayonnaise with similar characteristics
as mayonnaise prepared with egg yolk, was formulated.
In addition, an ANFIS fuzzy models for predicting the out-
put properties of mayonnaise system, was constructed. The
following conclusions can be drawn from the above
analysis:

(1) A shelf stable mayonnaise can be formulated with a
gum–protein egg substitute although the gum–pro-
tein substitute alone did not produce a mayonnaise
with the same high viscosity as 100% egg yolk.

(2) The mayonnaise formulated with the 75:25 and 25:75
at 4 �C were stable for 18 and 25 days, respectively.
As temperature was increased, the emulsion stability
was significantly decreased.

(3) The maximum viscosity was observed in the 100:0
(egg yolk: gum–protein). This treatment exhibited
the highest viscosity (8.8 Pa at 4 �C and 14.7–1 s).
(4) ANFIS models achieved an average prediction error
of output properties of only 4%. The present study
shows that ANFIS is a technique that can be used
efficiently to predict the food properties. It is believed
that this approach can be applied to predict many
other parameters and properties in food industry.
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