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Abstract: Analytical solutions of the advection-dispersion equation and related models are indispensable for predicting 
or analyzing contaminant transport processes in streams and rivers, as well as in other surface water bodies. Many useful 
analytical solutions originated in disciplines other than surface-water hydrology, are scattered across the literature, and 
not always well known. In this two-part series we provide a discussion of the advection-dispersion equation and related 
models for predicting concentration distributions as a function of time and distance, and compile in one place a large 
number of analytical solutions. In the current part 1 we present a series of one- and multi-dimensional solutions of the 
standard equilibrium advection-dispersion equation with and without terms accounting for zero-order production and 
first-order decay. The solutions may prove useful for simplified analyses of contaminant transport in surface water, and 
for mathematical verification of more comprehensive numerical transport models. Part 2 provides solutions for advec-
tive-dispersive transport with mass exchange into dead zones, diffusion in hyporheic zones, and consecutive decay chain 
reactions.  
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INTRODUCTION 
 

Mathematical models have long proved useful for analyzing 
or predicting the fate and transport of contaminants in streams 
and rivers (Bencala, 1983; Fischer et al., 1979; Runkel, 1998; 
Thomann, 1973), including contaminant exchange with fluvial 
sediments and the surrounding stream bed (Thackston and 
Schnelle, 1970; Bencala and Walters, 1983; Wörman, 1998; 
Anderson and Phanikumar, 2011), often referred to as the 
hyporheic zone (Wörman, 1998; Runkel et al., 2003; Bencala, 
2005; Gerecht et al., 2011). Such models may be used also for 
subsurface streams and karst systems (Field, 1997). Constitu-
ents in surface waters may involve a range of specific natural 
and anthropogenic chemicals, including toxic trace elements, 
radionuclides, industrial solvents, pesticides, nutrients, patho-
genic microorganisms, pharmaceuticals, and a variety of water 
quality variables such as total salinity or dissolved oxygen. 
Because of the many complex and often nonlinear physical, 
chemical and biological processes affecting contaminant 
transport in streams and rivers, numerical models are now 
increasingly used for prediction purposes (e.g., Anderson and 
Phanikumar, 2011; O’Connor et al., 2009; Runkel, 1998; 
Runkel and Chapra, 1993). Still, analytical and quasi-analytical 
approaches are useful for simplified analyses of a variety of 
contaminant transport scenarios, especially for relatively long 
spatial and time scales, when insufficient data are available to 
warrant the use of a comprehensive numerical model, and for 
testing numerical models. The application of analytical ap-
proaches is greatly facilitated now also by mathematical soft-
ware such as Maple, Mathematica and Matlab. 

Although the literature contains many analytical solutions 
that are applicable to transport in rivers and streams, most of 
the solutions originated in other disciplines using mathematical-
ly equivalent equations, and hence their existence may not be 

familiar to many in the surface-water hydrology community 
(e.g. De Smedt et al., 2006; Huang, 2006). In this two-part 
series we assembled a large number of one- and multi-
dimensional solutions for contaminant transport in streams and 
rivers. The solutions are for one-dimensional advective-
dispersive transport, longitudinal transport and lateral disper-
sion, transport with simultaneous first-order exchange with 
relative immobile or stagnant water zones (transient storage 
models), advective-dispersive transport with simultaneous 
diffusion into and out of hyporheic zones, and transport of 
solutes subject to consecutive decay chain reactions. Most of 
the solutions were derived from solutions to mathematically 
very similar problems in subsurface contaminant transport, on 
which the authors have worked for many years (e.g., Leij et al., 
1991, Toride et al., 1993a, 1999; van Genuchten, 1981). Except 
for solutions pertaining to diffusion in hyporheic zones as pre-
sented in part 2 (van Genuchten et al., 2013), most or all mod-
els have been incorporated in the public-domain windows-
based STANMOD software package (Šimůnek et al., 2000). In 
this part 1 we first start with a brief introduction of the advec-
tion-dispersion equation governing transport in surface water 
bodies, applicable initial and boundary conditions, and a brief 
overview of analytical solution techniques. 
 
GOVERNING TRANSPORT EQUATION 
Formulation of the Advection-Dispersion equation 
 

The transport of contaminants in surface and subsurface wa-
ters is generally described with the Advection-Dispersion Equa-
tion (ADE), or appropriate modifications or extensions thereof. 
The ADE distinguishes two transport modes: advective 
transport as a result of passive movement along with water, and 
dispersive/diffusive transport to account for diffusion and 
small-scale variations in the flow velocity as well as any other 
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processes that contribute to solute spreading. Solute spreading 
is generally considered to be a Fickian or Gaussian diffu-
sion/dispersion process. A considerable body of literature on 
dispersion processes now exists for both surface and subsurface 
contaminant transport (e.g., Bear and Verruijt, 1987; Fischer et 
al., 1979; Jury and Horton, 2004). 

For one-dimensional transport, the solute flux Js (ML-2T-1) 
can be written as 
 

 
 Js = uC − Dx 

∂C
∂x

, (1) 

 
where u is the longitudinal fluid flow velocity (LT-1), C is the 
solute concentration expressed as mass per unit volume of 
water (ML-3), Dx is the longitudinal dispersion coefficient ac-
counting for the combined effects of ionic or molecular diffu-
sion and hydrodynamic dispersion (L-2T-1), and x is the longitu-
dinal coordinate (L). 

The mass balance equation can be formulated in a general 
manner by considering the accumulation or depletion of solute 
in a control volume over time as a result of the divergence of 
the flux (i.e., net inflow or outflow), possible reactions, and the 
injection or extraction of solute along with the fluid phase: 
 

 

∂C
∂t

 = −∇⋅ Js − Rs +RwCe , (2) 

 
where t is time (T), and Rs represents arbitrary sinks (< 0) or 
sources (> 0) of solute (ML-3T-1), while the last term denotes 
injection (> 0) or pumping (< 0) of water with constituent con-
centration Ce at a rate Rw (L3L-3T-1). 

The use of analytical methods requires that some of the un-
derlying processes affecting transport are simplified or approx-
imated. Such simplifications include the use of constant values 
for u and Dx with respect to time and position, adopting ideal-
ized initial and boundary conditions, assuming that production 
and degradation are limited to zero- or first-order processes, 
and describing solute sorption by fluvial sediments using a 
linear equilibrium isotherm (or neglecting sorption altogether). 
If the last two terms of the mass balance equation are ignored, 
substitution of the advective-dispersive flux, Js, yields the 
popularly used advection-dispersion equation (ADE) for one-
dimensional transport as follows 
 

  

∂C
∂t

 = Dx
∂2C

∂x2   − u 
∂C
∂x

. (3) 

 
A variety of solute source or sink terms may need to be im-

plemented in the ADE. One possible process during transport in 
rivers is sorption of contaminants on sediment along the main 
channel. The source/sink term for sorption may then be written 
as (e.g., Bencala, 1983) 
 

 
Rs = sρ

∂S
∂t

, (4) 

 
where S is the sorbed concentration expressed as mass of solute 
per mass of sediment readily accessible for sorption (MM-1), 
and ρs is the mass of sediment per unit volume of river water 
(ML-3). For binary exchange in a system with a constant total 
solute concentration, linear equilibrium exchange is given by 
 

 S = KdC  (5) 
 
in which the distribution coefficient Kd (L3M-1) may be viewed 
as the ratio of the sorbed (sediment) concentration and the 
dissolved (stream) concentration at equilibrium (Bencala et al., 
1983). Substituting (1), (4) and (5) into (2) allows the ADE to 
be formulated in terms of one dependent variable (i.e., the 
stream solute concentration) according to 
 

  
R 
∂C
∂t

 = Dx 
∂2C

∂x2  − u
∂C
∂x

 (6) 

 
in which the retardation factor R is given by 
 

  R = 1+ ρsKd . (7) 
 

Sorption onto the sediments reduces the apparent advective 
and dispersive fluxes by a factor equal to R. This sorption is 
often considered negligible, in which case Kd = 0 and the value 
for R becomes equal to one. Analytical expressions for the 
concentration can generally be obtained only for linear sorp-
tion. Because the mathematical problem is trivial with regard to 
the value for R (the values of time t in the analytical solutions 
are to be divided by R), sorption will not be considered explicit-
ly in the remainder of our study. 

Many other processes such as biodegradation or inactivation, 
radioactive decay, and production may affect the contaminant 
concentration. They can all be included in the sink/source term, 
Rs , in Eq. (2). The transport problem can still be solved analyti-
cally if this term is described in terms of linear processes. For 
example, for relatively simple transport scenario's involving 
one or several sets of zero- and first-order rate expressions, the 
governing equation can always be represented in the form: 
 

  

∂C
∂t 

 = Dx 
∂2C

∂x2  − u 
∂C
∂x

 − µC + γ , (8) 

 
where µ is a general first-order decay rate (T-1) and γ a zero-
order production term (ML-3T-1). We assume in this study that µ 
and γ are either zero or always positive. Additional processes 
such as nonlinear exchange, precipitation/dissolution, and sorp-
tion or chelation of constituents by moving sediment, are not 
considered here since the resulting transport problem generally 
will require numerical solution techniques. 
 
Concentration modes and boundary conditions 
 

The mathematical solution of Eq. (8) and related transport 
equations requires auxiliary conditions specifying the initial 
and boundary condition of the transport problem. It is important 
that the boundary conditions accurately describe the adopted 
modes of solute injection and detection. Concentrations are 
usually expressed in terms of the amount of solute per unit 
volume of water. Although the microscopic concentration is 
based on an infinitesimally small liquid volume, for practical 
purposes a much larger finite averaging scale must be used. In 
this way a macroscopic volume-averaged or resident concentra-
tion, CV, can be defined as 
 

  
VC  = 1

ΔV
  ∫ ∫ ∫ c dV ,  (9) 
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where c is the local concentration (ML-3) in a microscopic 
volume element, V, and ΔV is the representative elementary 
volume (Bear and Verruijt, 1987). Spatial or temporal averages 
beyond the REV scale may also be employed (Leij and Toride, 
1995). Unless stated otherwise, we will assume that all concen-
trations are macroscopic and are of the volume-averaged or 
resident type. 

Flux-averaged concentrations, CF, may arise when the con-
centration is determined as the ratio of the solute flux, Js, and 
the water flux, u, passing through a given cross section during 
an arbitrary time interval (Kreft and Zuber, 1978; Parker and 
van Genuchten, 1984a), i.e., 
 

  
FC = Js / u.  (10) 

 
A relationship between the volume- and flux-averaged concen-
trations can be established by substituting the one-dimensional 
advective-dispersive flux (Eq. (1)) into (10) to give 
 

  

FC = VC − xD
u

 
∂CV

∂x
.  (11) 

 
Notice that CV and CF become similar for small values of Dx/u, 
i.e., when dispersion is negligible as compared to advection. 
We emphasize that CF is a mathematical entity that depends on 
the formulation of the contaminant flux. As will be discussed 
shortly, the selection of boundary conditions is related to the 
concentration mode. 

The initial condition can be formulated as 
 

  C(x, 0) = f (x),   (12) 
 
where f(x) is an arbitrary function versus distance, the simplest 
case being the situation where the stream has a constant (zero 
or positive) background concentration. An alternative initial 
condition, often assumed for one-dimensional stream transport, 
is the Dirac condition specifying instantaneous release of a 
prescribed mass. This relatively hypothetical condition assumes 
that a contaminant mass, m, can be distributed instantaneously 
over an infinitely small region, for example a thin plane of area 
A across the main channel at some longitudinal position xo , i.e., 
 

  
f (x) = m

A
δ (x − xo ),  (13) 

 
where δ(x–xo) is the Dirac function (L-1) having the property 
 

  

-∞

∞
∫  δ (x − xo )dx = 1     

with δ (x − xo ) = 0  for all x ≠ xo .
 

(14)
 

 
Proper selection of boundary conditions is a somewhat eso-

teric topic that has received considerable attention in the litera-
ture on transport in porous media (e.g., Batu et al., 2013; van 
Genuchten and Parker, 1984). Many transport problems involve 
the application of a solute with a concentration described by a 
spatially independent function, g(t), to a surface water body 
that, for modeling purposes, can have a finite, semi-infinite, or 
infinite length. The method of application (or the contaminant 
source) may also vary widely (pumping or spraying, line or 
point sources, continuous or finite pulse type applications). 

Boundary conditions are simplest for transport problems de-
fined over infinite domains (–∞ < x < ∞). To ensure that the 
concentration remains bounded, the inlet and outlet conditions 
can be written in the form 
 

  

∂C
∂x

( ±∞, t) = 0.  (15) 

 
Two types of conditions are often used at the inlet of semi-

infinite media (0 ≤ x ≤ ∞) or finite media (0 ≤ x ≤ L). These 
conditions are based on continuity of either the concentration or 
the solute flux across the inlet boundary. We do not discuss 
here the simultaneous use of both conditions since this situation 
is generally too complicated for deriving relatively simple 
analytical solutions. 

First- or concentration-type inlet boundary conditions, also 
referred to as Dirichlet conditions, require the concentration to 
be continuous across the interface at all times, i.e., 
 

  C(0,t) = g(t)      t > 0.  (16) 
 
The drawback of this condition is that the (macroscopic) con-
centration at the interface just inside the river system will, in 
reality, not respond instantaneously to changes in the influent 
concentration. Condition (16) generally leads to discrepancies 
in the mass balance when considered over a finite or semi-
infinite system (Batu and van Genuchten, 1990; Parker and van 
Genuchten, 1984a). Mass conservation can be ensured by using 
a third- or flux-type condition at the inlet (often referred to also 
as a Robin or Cauchy type condition): 
 

  x=0+
uC − xD  

∂C
∂x

 
⎛
⎝⎜

⎞
⎠⎟

= ug(t),  (17) 

 
where 0+ indicates a position just inside the system being con-
sidered. Analytical solutions for first-type conditions are gener-
ally somewhat simpler than those for third-type inlet condi-
tions. This probably explains the popularity of first-type condi-
tions despite mass balance errors in the predicted resident con-
centration distributions. 

Some commonly-used functions for the influent concentra-
tion, g(t), in (16) or (17) are the Dirac function, a finite square 
pulse, and a Heaviside or step function. An instantaneous appli-
cation of a solute amount m at the inlet, x = 0, at an arbitrary 
time, to, across an area A is given by 
 

  
g(t) = m

uA
δ (t − to ),  (18) 

 
where δ(t–to) is the Dirac delta function in time (T-1). Instanta-
neous release into a stream at x = 0 can be described alterna-
tively also with a Dirac type initial condition. 

The application of a finite pulse can be formulated as 
 

  
g(t) =

Co     0 < t ≤ to 

0         t > to

⎧
⎨
⎪

⎩⎪
 (19) 

 
where to is the time duration of the applied pulse having con-
centration Co. Note that to approaches infinity for a single step 
change. Because of the linearity of the ADE, solutions for 
problems involving an arbitrary number of finite pulses of 
different durations (to) and strengths (Co) can be readily inferred 
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from the single step solution; the Heaviside function is conve-
nient for this purpose. 

The exit boundary condition can be defined in terms of a ze-
ro gradient at a finite or infinite distance from the inlet, leading 
to the assumption of having a finite or semi-infinite medium, 
respectively. The infinite outlet condition is mathematically far 
more convenient than the finite condition, and hence has been 
far more popular in analytical transport studies, even when 
finite systems are simulated. The infinite outlet condition is 
given by 
 

  

∂C
∂x

 (∞,t) = 0.  (20) 

 
The use of this condition for a finite system implies that a semi-
infinite fictitious medium with identical properties is placed 
beyond the system of interest. No assumptions have to be made 
regarding the physical processes at the outlet, x = L, other than 
that the ADE is applicable just like everywhere else at x > 0.   

The domain for most transport problems involving rivers is 
best described with a semi-infinite or infinite system, rather 
than a finite system. However, we shall provide in this paper 
also several analytical solutions for finite systems since numer-
ical solutions, by their very nature, can be applied only to finite 
domains. Assuming that no dispersion occurs for x > L, the 
approximate condition for a finite system is 
 

  

∂C
∂x

 (L,t) = 0.  (21) 

 
This conditions implies both flux and concentration continuity 
at the downstream boundary of the finite transport domain. A 
zero-gradient outlet condition is also appealing when no 
transport occurs across a boundary, such as is the case for so-
lute diffusion or heat transport problems involving insulated 
media. 

The choice of the boundary conditions is affected by the 
concentration mode (Kreft and Zuber, 1978). In practice only 
the dependency of the inlet condition is considered (cf. Parker 
and van Genuchten, 1984a). A typical problem in terms of the 
usual resident concentration can be formulated as 
 

  

∂CV

∂t
 = xD  

∂2CV

∂x2   − u 
∂CV

∂x
 (22) 

 
subject to a uniform initial condition 
 

  
VC (x,0) = f (x) = Ci  (23) 

 
a third-type inlet boundary condition to avoid mass balance 
problems  
 

  x=0+

VuC − xD  
∂CV

∂x

⎛

⎝
⎜

⎞

⎠
⎟  = ug(t)  (24) 

 
and a semi-infinite or finite outlet condition 
 

  

∂CV

∂x
(∞,t) = 0,   

∂CV

∂x
 (L,t) = 0.  (25a, b) 

 

As shown by Parker and van Genuchten (1984b) this problem 
can be readily transformed to the flux-averaged mode using Eq. 
(11) to give 
 

  

∂C F

∂t
= xD  

∂2C F

∂x2 − u
∂C F

∂x
 (26) 

 
subject to 
 

  
FC (x,0) = Ci  (27) 

 

  C
F (0,t) = g(t),  (28) 

 

  

∂ FC
∂x

(∞,t) = 0     or    

 
∂C F

∂x
 (L,t) = −

Dx
u

 
∂2CV

∂x2
(L,t).

 
(29)

 

 
Notice that the mathematical problem in terms of CF involves 
the simpler first-type inlet condition with mass now being con-
served, unlike the use of a first-type condition for transport 
problems in terms of CV. This shows that solutions for a semi-
infinite system involving a first-type inlet condition represent 
mass-conserving solutions if the concentration, inside and 
outside the solution domain, is interpreted as being of the flux-
averaged type (Batu et al., 2013; Parker and van Genuchten, 
1984a). The transformations leading to Eqs (26) through (29) 
are less convenient for finite systems as well as for semi-
infinite systems having nonuniform initial conditions (Toride et 
al., 1993b). 

Differences between the preferred third-type and first-type 
solutions for CV are usually minor except for small values of the 
dimensionless distance (ux/Dx) and time (u2t/Dx) (e.g., van 
Genuchten and Parker, 1984). Since advective transport usually 
dominates dispersive transport in rivers and streams, the selec-
tion of a first- or third-type condition is of secondary im-
portance for most practical river transport problems, except 
near the inlet. However, the issue should not be overlooked for 
code verification when small errors in the mass balance are 
important. Hence, analytical solutions will be presented for 
both first- and third-type inlet conditions. All concentrations in 
this study are understood to be of the resident type; flux-
averaged concentrations can be derived as needed from the 
resident solutions using Eq. (11). 
 
SOLUTION TECHNIQUES 
Problems in one dimension 
 

Before presenting specific analytical solutions, two different 
solution techniques will be briefly reviewed. Although a wide 
variety of solution procedures can be followed, many linear 
transport problems can be solved by either using a transfor-
mation of variables, or implementing Laplace transforms. 

Most streams can be considered infinite systems in the longi-
tudinal direction.  This makes them quite suitable for making a 
transformation of variables to cast the ADE in a simpler form. 
For example, the coordinate transformation 
 

 

ξ = x − ut
τ = t

 (30) 
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transforms Eq. (3) subject to 
 

  
C(x,0) =  

Co   x < 0
0    x > 0

⎧
⎨
⎪

⎩⎪
      

∂C
∂x

 (±∞,t) = 0  (31) 

 
into the heat transfer (or solute diffusion) problem 
 

  

∂C
∂τ

= Dx
∂2C

∂ 2ξ
 (32) 

 

  
C(ξ ,0) =  

Co    ξ < 0
0    ξ > 0

⎧
⎨
⎪

⎩⎪
 (33) 

 
Analytical solutions for this and many related problems have 
been widely reported in the literature (e.g. Carslaw and Jaeger, 
1959; Crank, 1975). 

An alternative transformation 
 

  
ξ = x − ut

4Dxt
 (34) 

 
allows the ADE to be written as 
 

  

2d C
d 2ξ

+ 2ξ dC
dξ

= 0,  (35) 

 

  
C(ξ ) =  

Co   ξ < −∞

0    ξ > ∞

⎧
⎨
⎪

⎩⎪
 (36) 

 
This ordinary differential equation can be solved through a 
reduction of order according to 
 

  

dψ
dξ

+ 2ξψ = 0        where ψ = dC
dξ

. (37) 

 
Separation of variables and integration leads to the following 
solution of (37): 
 

 
ψ =α1exp(−ξ 2 ),  (38) 
 
where α1 is an integration constant. Integration of ψ between ξ 
(corresponding to the desired concentration, C), and ∞, and 
making use of a zero-concentration as dictated by the infinite 
boundary condition, leads to 
 

  

C =
ξ

∞
∫ α1exp(−w2 )dw+α2 =

π
2

α1erfc 
x − ut

4Dxt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+α2  (39) 

 
in which w is a dummy integration variable, α2 is an additional 
integration constant, and erfc represents the complementary 
error function (e.g., Gautschi, 1964). The boundary conditions 
are used to evaluate α1 and α2. The final solution is 
 

  

C =
Co
2

 erfc x − ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (40) 

 
More complicated transformations were previously used by 
Brenner (1962) and Selim and Mansell (1976); several can also 
be found in Zwillinger (1989). 

The complementary error function (erfc) in Eq. (40) fre-
quently occurs in analytical solutions of the ADE. Several 
approximations can be found in Gautschi (1964). Its evaluation 
is sometimes not straightforward, especially when erfc occurs 
in combination with the exponential function and either or both 
of these functions have unusually large or small arguments. A 
useful routine for evaluating erfc is listed in van Genuchten and 
Alves (1982). In some cases, especially for situations with 
exponentially decaying inflow concentrations, the argument of 
the erfc function and other terms in the analytical solutions may 
involve complex variables with real and imaginary parts. An 
accurate subroutine for such cases is given by van Genuchten 
(1985b).  

Linear partial differential equations are often solved with in-
tegral transforms. The transformations generally lead to ordi-
nary differential or even algebraic equations which are much 
easier to solve than the original partial differential equations. 
Subsequent inversion of the solution to the regular space-time 
domain is generally the most complicated part of the solution 
procedure. The inversion often can be accomplished in several 
ways (cf. Özişik, 1989; Pérez-Guerrero et al., 2009; Sneddon, 
1995; Spiegel, 1965). Laplace transforms traditionally have 
been the most popular for solving the ADE (Leij et al., 1993; 
Toride et al., 1993a; van Genuchten, 1981). 
 
Problems in several dimensions 
 

Solutions of transport problems in two and three dimensions 
are in many cases a direct extension of the one-dimensional 
solutions. We consider here three-dimensional problems in 
Cartesian coordinates (x,y,z) with uniform flow and dispersion 
in the longitudinal direction and dispersion in the transverse 
direction. We note that solutions for two-dimensional problems 
follow directly from solution of the more general three-
dimensional examples.   

The three-dimensional form of the ADE is given by 
 

  

∂C
∂t

= Dx
∂2C

∂x2 − u
∂C
∂x

+ Dy 
∂2C

∂y2 + Dz
∂2C

∂z2 ,  (41) 

 
where Dy and Dz are dispersion coefficients (L2T-1) in the trans-
verse y and z directions. Although the boundary conditions may 
vary depending upon the assumed geometry of the system, they 
normally include zero-gradient conditions at the transverse 
boundaries. Below are the conditions for a somewhat idealized 
three-dimensional system involving a semi-infinite longitudinal 
direction and two infinite transverse directions: 
 

  C(x, y,z,0) = f (x, y,z),  (42) 
 

  x=0+
C −ω xD

u
∂C
∂x

 
⎛
⎝⎜

⎞
⎠⎟

= g( y,z,t) ω = 0,1,  (43) 

 

  

∂C
∂x

(∞, y,z,t) = 0,  (44) 
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C(x,±∞,z,t) = 0    

∂C
∂y

(x,±∞, z, t) = 0,  (45) 

 

  
C(x, y,±∞,t) = 0     

∂C
∂z

(x, y,±∞,t) = 0,  (46) 

 
where ω equals 0 or 1 for a first- and third-type boundary con-
dition, respectively. Note that f(x,y,z) and g(y,z,t) are arbitrary 
initial and influent distributions, respectively. These functions 
can be specified in a similar manner as for the one-dimensional 
case except that f and g now depend on multiple coordinates 
instead of one. 

For three-dimensional infinite systems the use of a moving 
longitudinal coordinate (Eq. (30)) readily transforms the ADE 
and its auxiliary conditions into a three-dimensional diffusion 
problem for which a wealth of analytical solutions exist. An-
other straightforward method of solving multidimensional 
transport problems is the use of the product rule which states 
that the product of the solutions of (simpler) one-dimensional 
problems may directly give the desired three-dimensional solu-
tion (e.g., Carslaw and Jaeger, 1959). Consider the three one-
dimensional problems 
 

  

∂Cx
∂t

= Dx
∂2Cx

∂x2 − u
∂Cx
∂x

,  (47) 

 

  

∂Cy

∂t
= Dy

∂2Cy

∂y2 ,  (48) 

 

  

∂Cz
∂t

= Dz
∂2Cz

∂z2 .  (49) 

 
The product of the solutions of these three one-dimensional 
problems, i.e., 
 

  
C(x, y,z,t) = Cx (x,t) Cy ( y,t) Cz (z,t)  (50) 

 
also satisfies the three-dimensional transport equation. Applica-
tion of the product rule requires that the boundary conditions be 
homogeneous and that the initial condition for the three-
dimensional problem can be written as a product of the three 
one-dimensional initial conditions. 

Several approaches, in addition to moving coordinate trans-
formation and product rules, have been used in the literature. 
These include separation of variables and Fourier series (Bruch 
and Street, 1967), Green's functions (Leij and van Genuchten, 
2000; Sagar, 1982; Yeh and Tsai, 1976), or integral transforms 
(Cleary, 1973; Leij and Dane, 1990; Leij et al., 1993, Pérez 
Guerrero et al., 2013). 

For many river systems at least one direction will be finite, 
which may complicate the mathematical solutions. Several 
integral transforms, mostly of the Fourier type, have been used 
by Özişik (1989) and Sneddon (1995) for such situations. In 
some cases one or two of the finite directions can be neglected 
by using a depth-averaged concentration, or by making use of 
uniformity in the initial and boundary conditions across the 
stream. Another approach is the use of fictitious constituent 
sources outside the solution domain to ensure a zero-gradient at 
the boundaries (e.g., see p. 49 of Fischer et al., 1979). This 

approach permits one to still use the relatively simple solutions 
available for infinite outlet conditions. 
 
SPECIFIC ADE SOLUTIONS 
One-dimensional solutions with third-type inlet condition 
 

Consider the ADE for a contaminant subject to a combina-
tion of first-order decay and zero-order production to represent 
a variety of physical, chemical or biological reactions: 
 

  

∂C
∂t

= Dx
∂2C

∂x2 − u
∂C
∂x

− µC + γ .  (51) 

 
Eq. (51) will be solved for the following initial and boundary 
conditions: 
 

  C(x,0) = f (x),  (52) 
 

  x=0+
uC −ωDx

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

= ug(t),  (53) 

 

  

∂C
∂x

(∞,t) = 0       or    
∂C
∂x

(L,t) = 0.  (54a, b) 

 
Analytical solutions for a third-type inlet condition (ω = 1) 

are given below under Case A, while those for a first-type inlet 
condition (ω = 0) are presented under Case B. The first solution 
will be for a Dirac delta type initial distribution, from which 
solutions for arbitrary initial profiles can be derived. The re-
maining one-dimensional solutions were selected from van 
Genuchten (1981) and van Genuchten and Alves (1982). The 
latter publication contains a large number of solutions for situa-
tions with and without zero-order production and first-order 
decay. Most of the semi-infinite solutions, as well as others, 
were later included in the CXTFIT computer programs (Parker 
and van Genuchten, 1984b; Toride et al., 1999), which later 
were incorporated into the windows-based STANMOD soft-
ware package (Simůnek et al., 2000).  

Case A0. Semi-infinite domain with zero initial concentra-
tion and a Dirac-type input function g(t) = mδ(t)/Au. Neglecting 
any production or decay (µ = γ = 0), the solution is 
 

  

C(x,t) = m
A

  
1

πDxt
 exp − (x − ut)2

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

⎧
⎨
⎪

⎩⎪

− u
2Dx

 exp
ux
Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc 

x + ut

4Dxt
 

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪
.

 

(55)

 

 
As mentioned previously, an alternative solution exists for a 
Dirac-type initial distribution in an infinite medium.   

In case of an arbitrary input function, g(t), the expression for 
the concentration can be written as the convolution of the input 
signal and the concentration for the Dirac function: 
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C(x,t) = ug(t −τ )  
1

πDxτ
 exp − (x − uτ )2

4Dxτ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪0

t
∫

− u
2Dx

 exp
ux
Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc 

x + uτ
4Dxτ

 
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪
dτ .

 

(56) 

 
Fig. 1 shows an example of the Dirac solution given by Eq. 

(55) using parameter values selected previously by De Smedt et 
al. (2005) to test their analytical solution for the same Dirac 
inlet problem but assuming a first-type boundary condition (the 
solution of which is given by Case B0 below). The example 
involves an instantaneous injection (or spill) of 1 kg of a solute 
in the main channel of a river having a cross-section of 10 m2, 
an average flow velocity of 1 m/s and a dispersion coefficient 
of 5 m2/s. De Smedt et al. (2005) in their analysis also included 
the effects of a dead storage zone which we ignore here (that 
case will be discussed in part 2). Fig. 1 shows the solute distri-
butions in the stream after 500, 1000 and 1500 s. The curve for 
t = 1000 s is essentially the same as the one calculated by De 
Smedt et al. (2005) assuming no mass transfer into the dead 
zone (their Fig. 1 with α = 0). 
 

 
 
Fig. 1. Calculated concentration distributions obtained with Eq. 
(55) for instantaneous injection of 1 kg of solute in a stream having 
a cross-sectional area of 10 m2 assuming a third-type Dirac input 
boundary condition (u = 1 m s-1, Dx = 5 m2 s-1). 
 
Case A1. Semi-infinite domain with uniform initial concentra-
tion, f(x) = Ci and no production or decay. The inlet concentra-
tion function, g(t), is of the pulse type (a Heaviside type func-
tion) with constant concentration Co , i.e., 
 

  
g(t) =

Co     0 < t ≤ to 

0          t > to.

⎧
⎨
⎪

⎩⎪
 (57) 

 
The solution of this example is 
 

  

C(x,t) =
Ci + (Co −Ci )A(x,t)                  0 < t ≤ to  

Ci + (Co −Ci )A(x,t)−Co A(x,t − to )      t > to ,

⎧
⎨
⎪

⎩⎪
 

(58)
 

 
where 

  

A(x,t) = 1
2

 erfc 
x − ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 + u2t

πDx
 exp −

(x − ut 2)
4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
  

 − 1
2

1 + ux
Dx

+ u2t
Dx

⎛

⎝
⎜

⎞

⎠
⎟  exp

ux
Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc

x + ut

4Dxt 

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 

(59)

 

 
Here we illustrate one possible application of the above ana-

lytical solution by fitting the transport parameters in Eqs. (58) 
and (59) to observed data obtained by Brevis et al. (2001) as 
discussed by De Smedt et al. (2005). The data pertain to a tracer 
experiment in the Chillán River in Chile using a 20% Rhoda-
mine WT solution injected simultaneously at multiple points 
along a lateral cross-section of the river at x = 0. Fig. 2 shows 
the observed data of one of their experiments (Exp. I-3), in this 
case for the application of 157.1 g of tracer at x = 0, with mea-
surements made 4604 m downstream of the injection point. 
Because of the relative short duration of the experiments, pho-
todegradation and sorption of Rhodamine WT were presumed 
to be negligible (De Smedt et al., 2005).  
 

 
 
Fig. 2. Observed (solid squares) and fitted (continuous line) con-
centrations for tracer experiment I-3 of Brevis et al. (2001) and De 
Smedt et al. (2005). 
 

Fig. 2 shows the data along with the fitted curve based on 
Eqs (58) and (59). Parameters were estimated using the nonlin-
ear least-squares optimization features of the CXTFIT code 
(Toride et al., 1999) within STANMOD. The code allows one 
to estimate not only the longitudinal flow velocity u and the 
longitudinal dispersion coefficient Dx, but also the concentra-
tion Co of the applied tracer solution for a given value of the 
injection or pulse time to in Eq. (58). Assuming a very short 
injection period of only 10 s, we obtained the following param-
eter values (with their 95% confidence intervals): u = 0.426 ± 
0.003 m/s, Dx = 11.4 ± 1.4 m2/s, and Co = 1729 ± 86 mg/m3. 
The coefficient of determination (R2) of the fit was 0.983, and 
the root mean square error (RMSE) 0.382 mg/m3). One may 
verify that the total amount of solute mass (m) injected per m2 
cross-sectional area hence equals m = u Co

 to, or 7.37 g/m2. 
Given that a total amount of 157.1 g of tracer was applied to the 
river, this translates to an effective cross-sectional area of 157.1 
g/7.37 (g/m2) or 21.3 m2 of the channel as calculated with the 
equilibrium ADE transport model. 

The above calculations assume applicability of Eqs. (58) and 
(59) using a solute injection pulse of 10 s. Exactly the same 
results were obtained when the total mass was assumed to be 
applied instantaneously (as estimated with CXTFIT using the 
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Dirac solution given by Eq. (55)), or spread over a time period 
to of 100 s. We also ran the problem assuming a first-type inlet 
boundary condition (Cases B0 and B1 given later in this paper). 
Results were again the same or very close to those obtained 
with the third-type boundary conditions. For example, for the 
first-type boundary condition (Case B0) we obtained u = 0.424 
± 0.003 m/s, Dx = 11.3 ± 1.3 m2/s, and Co = 1729 ± 860 mg/m3 
(R2 = 0.970; RMSE = 0.382), which essentially duplicates the 
results for the third-type solutions. This shows that differences 
between the first- and third-type boundary conditions for 
transport problems with relatively large values of the system 
Peclet number, uL/Dx (van Genuchten and Parker, 1984) gener-
ally are very small. The calculated curve in Fig. 2 assuming 
equilibrium transport provided a reasonable fit of the data, 
albeit not perfect. In part 2 (van Genuchten et al., 2013) we will 
analyze the same problem in terms of the transient storage 
model, similarly as was considered by De Smedt et al. (2005). 

Case A2. The same as case A1 (i.e., for a semi-infinite do-
main with uniform initial concentration Ci  and a pulse-type 
input function with concentration Co), but now with zero-order 
production and first-order decay. The solution is 
 

  

C(x,t) =

 Co −
γ
µ

⎛
⎝⎜

⎞
⎠⎟

A(x,t)+ B(x,t)             0 < t ≤ to

Co −
γ
µ

⎛
⎝⎜

⎞
⎠⎟

A(x,t)+ B(x,t)

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

−Co A(x,t − to )     t > to ,

 (60) 

 
where 
 

  

A(x,t) = u
u +ξ

  exp 
(u −ξ )x

2Dx

⎡

⎣
⎢

⎤

⎦
⎥ erfc

x −ξt

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 
u

u −ξ
 exp 

(u +ξ )x
2Dx

⎡

⎣
⎢

⎤

⎦
⎥ erfc 

x +ξt

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   + u2

2µDx
 exp 

ux
Dx

− µt
⎛

⎝⎜
⎞

⎠⎟
 erfc 

x + ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 

(61)

 

 

  

B(x,t) = γ
µ
+ Ci −

γ
µ

⎛
⎝⎜

⎞
⎠⎟
 exp −µt( ) 1− 1

2
erfc 

x − ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

⎧
⎨
⎪

⎩⎪

 −  
u2t
πDx

  exp − (x − ut)2

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ 1
2

 1+ ux
Dx

+ u2t
Dx

⎛

⎝
⎜

⎞

⎠
⎟ exp

ux
Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc 

x + ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪
.

 

(62)

 

 
in which 
 

  ξ = u 1+ 4µDx / u2 .  (63) 
 

Fig. 3 shows an application of this solution using the same 
problem and parameter values as for Case A0 (Fig. 1), but now 
 

assuming that the solute was injected during a finite (pulse) 
period to of 1000 s, and that the solute was subject to first-order 
decay (µ ≥ 0), but without any first-order production (γ = 0).  

Case A3. Steady-state solution for a semi-infinite domain 
with a third-type inlet concentration Co, and zero- and first-
order decay. The analytical solution can be written as 
 

  
C(x) = γ

µ
+ Co −

γ
µ

⎛
⎝⎜

⎞
⎠⎟
  

2u
u +ξ

⎛
⎝⎜

⎞
⎠⎟
  exp  

(u −ξ )x
2Dx

⎡

⎣
⎢

⎤

⎦
⎥ . (64) 

 
Case A4. Semi-infinite domain with a nonuniform initial 

concentration, f(x)=E(x), and a pulse-type inlet condition like 
Case A1 with g(t) given by Eq. (57). As initial condition we use 
the steady-state profile resulting from continuous application of 
a solute at background concentration, Cb. This initial profile 
follows directly from Case A3 as: 
 

  
C(x,0) ≡ E(x) = γ

µ
+ Cb −

γ
µ

⎛
⎝⎜

⎞
⎠⎟
 

2u
u +ξ

⎛
⎝⎜

⎞
⎠⎟
 exp 

(u −ξ )x
2Dx

⎡

⎣
⎢

⎤

⎦
⎥.  (65) 

 
 

 
 
Fig. 3. Effect of first-order degradation (µ) on calculated concen-
tration distributions in a stream after injection of a solute having a 
concentration of 10 g/m3 for 1000 s (u = 1 m s-1, Dx = 5 m2 s-1, γ = 
0 g m-3 s-1, to = 1000 s). 
 
The analytical solution for this case is 
 

  

C(x,t) =
(Co −Cb)A(x,t)+ E(x)                  0  <  t  ≤  to 

 
 (Co −Cb)A(x,t)+ E(x)−Co A(x,t − to )   t > to ,

⎧

⎨
⎪

⎩
⎪

 
(66)

 

 
where A(x,t) is given by Eq. (61) and E(x) by (65). 

Case A5. Semi-infinite domain with uniform initial concen-
tration, f(x)=Ci, no production and decay, and an influent con-
centration that decreases exponentially with time: 
 

  
g(t) = Cb +Co exp(−λt)  (67) 
 
where λ is a constant (T-1).  The solution for this case is 
 

  C(x,t) = Ci + (Cb −Ci )A(x,t)+CoB(x,t),  (68) 
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where 
 

  

A(x,t) = 1
2

erfc 
x − ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 + 

u2t
πDx

 exp − 
(x − ut)2

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
  

 − 1
2

 1+ ux
Dx

+ u2t
Dx

⎛

⎝
⎜

⎞

⎠
⎟ exp

ux
Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc 

x + ut

4Dxt 

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 

(69)

 

 

  

B(x,t) = exp(−λt)
u

u +κ
 exp

(u −κ )x
2Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc

x −κ t

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪
 

+ u
u −κ

 exp
(u +κ )x

2Dx

⎛

⎝⎜
⎞

⎠⎟
erfc 

x +κ t

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪
 

    − u2

2λDx 
  exp 

ux
Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc 

x + ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

 

(70)

 

 

 

 
and 
 

  κ = u 1− 4λDx / u2 .  (71) 
 
Note that this example reduces to Case A1 (only for t < to) 
when Co = 0. 

Case A6. Finite domain with zero initial concentration, f(x) 
= 0, a third-type inlet condition, and no zero- and first-order 
rate processes (i.e., µ = γ = 0). The inlet condition is again the 
same as for Case A1, i.e., a pulse type concentration with con-
stant Co. The outlet condition is now a zero gradient at x = L as 
given by Eq. (21). The solution for this case is (Brenner, 1962): 
 

  

C(x,t)
Co

= 1− 2uL
Dx m−1

∞
∑

G(x)exp
ux

2Dx
− u2t

4Dx
+
βm

2 Dxt

L2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

βm
2 + uL

2Dx

⎛

⎝⎜
⎞

⎠⎟

2

+ uL
Dx

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
βm

2 + uL
2Dx

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

,   (72a) 

 
where 
 

  
G(x) = βm βm cos

βmx
L

⎛
⎝⎜

⎞
⎠⎟
+ uL

2Dx
sin

βmx
L

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (72b) 

 
in which the eigenvalues βm are the positive roots of 
 

  
mβ  cot( mβ )− m

2β Dx

uL
+ uL

4Dx
= 0.  (73) 

 
The above series solution converges very slowly when advec-
tion dominates dispersion as is often the case for stream 
transport problems. For either 
 

  

uL
Dx

> 5+ 40
ut
L

     or    
uL
Dx

>100  (74) 

 
 

the following approximate solution may be used (Brenner, 
1962; van Genuchten and Alves, 1982):  
 

  

C(x,t)
Co

= 1
2

erfc 
x − ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 + u2t

πDx
 exp −

2(x − ut)
4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

− 1
2

1+ ux
Dx

+ u2t
Dx

⎛

⎝
⎜

⎞

⎠
⎟ exp

ux
Dx

⎛

⎝⎜
⎞

⎠⎟
erfc

x + ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  + 4u2t
πDx

 1+ u
4Dx

(2L− x + ut)
⎡

⎣
⎢

⎤

⎦
⎥  exp 

uL
Dx

− (2L− x + ut)2

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  − u
Dx

  2L− x + 
3ut
2

+ u
4Dx

 (2L− x + ut 2)
⎡

⎣
⎢

⎤

⎦
⎥ 

⎧
⎨
⎪

⎩⎪
 

• exp 
uL
Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc 

(2L− x)+ ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪
.

 

(75)

 

 
Although in most cases considerably more complicated, a 

large number of analytical solutions are also available for finite 
systems with zero-order production and/or first order decay 
(Pérez Guerrero et al., 2009; van Genuchten and Alves, 1982). 
 
One-dimensional solutions with first-type inlet condition 
 

Case B0. Semi-infinite domain with zero initial concentra-
tion, a first-type (ω = 0) inlet condition, and a Dirac-type input 
concentration. The solution for the case of no production or 
decay is 
 

  

C(x,t) = m
Au

 
x

4πDxt3
 exp − (x − ut)2

4Dxt
 

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (76) 

 
For arbitrary input profiles the expression for the concentration 
can again be written as the convolution of the input signal and 
the concentration for the Dirac input: 
 

  

C(x,t) = xg(t −τ )

4πDxτ
30

t
∫ exp

(x − uτ )2

4Dxτ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dτ .  (77) 

 
Case B1. Semi-infinite domain with uniform initial concen-

tration, f(x) = Ci, and a pulse-type solute application (i.e., Eq. 
(57) as for Case A1). The solution is 
 

  

C(x,t) = 
Ci + (Co −Ci )A(x,t)                         0 < t ≤ to

Ci + (Co −Ci )A(x,t)−Co A(x,t − to )    t > to

⎧
⎨
⎪

⎩⎪
 

(78)
 

 
where 
 

  

A(x,t) = 1
2

erfc 
x − ut

4Dxt

⎡

⎣
⎢

⎤

⎦
⎥ +

1
2

exp
ux
Dx

 
⎛

⎝⎜
⎞

⎠⎟
 erfc 

x + ut

4Dxt 

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (79) 

 
Case B2. Semi-infinite domain with uniform initial concen-

tration, f(x) = Ci, and a pulse-type solute application. The solu-
tion for a first-type inlet condition is 
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C(x,t) =

 Co −
γ
µ

⎛
⎝⎜

⎞
⎠⎟

A(x,t)+ B(x,t)              0 < t ≤ to

Co −
γ
µ

⎛
⎝⎜

⎞
⎠⎟

A(x,t)+ B(x,t)

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

−Co A(x,t − to )     t > to ,

 (80) 

 
where 
 

  

A(x,t) = 1
2

 exp 
(u −ξ )x

2Dx

⎡

⎣
⎢

⎤

⎦
⎥ erfc 

x −ξt

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

+ 1
2

exp 
(u +ξ )x

2Dx

⎡

⎣
⎢

⎤

⎦
⎥ erfc 

x +ξt

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

(81)

 

 
and 
 

  

B(x,t) = γ
µ

 + Ci −
γ
µ

⎛
⎝⎜

⎞
⎠⎟
 exp(−µt) 

 1− 1
2

 erfc 
x − ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 − 1

2
exp 

ux
Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc 

x + ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 

(82)

 

 
in which ξ is as defined previously by Eq. (63). 

Case B3. Steady-state solution for a semi-infinite domain 
with uniform initial concentration, f(x) = Ci. The analytical 
solution for a step-type inlet condition with constant concentra-
tion Co is 
 

  
C(x) = 

γ
µ

 + Co −
γ
µ

⎛
⎝⎜

⎞
⎠⎟
 exp 

(u −ξ )x
2Dx

⎡

⎣
⎢

⎤

⎦
⎥.  (83) 

 
Case B4. Semi-infinite domain with nonuniform initial con-

centration, f(x) = E(x), and again a pulse-type inlet condition of 
Case A1 with constant Co. As initial condition we use the 
steady-state profile resulting from a continuous application of 
the solute at background concentration, Cb. This initial profile 
follows from Case B2 as 
 

  
C(x,0) ≡ E(x) = 

γ
µ

 + Cb −
γ
µ

⎛
⎝⎜

⎞
⎠⎟
 exp 

(u −ξ )x
4Dx

⎡

⎣
⎢

⎤

⎦
⎥ ,  (84) 

 
where Cb, as before, represents the background concentration 
before the pulse of concentration Co is applied. The solution for 
this case is 
 

  

C(x,t) =

 Co −Cb( )A(x,t)+ E(x)                0 < t ≤ to

Co −Cb( )A(x,t)+ E(x)

⎧

⎨
⎪
⎪

⎩
⎪
⎪

−Co A(x,t − to )     t > to ,

 (85) 

 
where A(x,t) is given by Eq. (81) and E(x) by (84). 

Case B5. Semi-infinite domain with uniform initial concen-
tration, f(x) = Ci, a first-type inlet condition with no production 

and decay, and an influent concentration that decreases expo-
nentially with time as defined for Case A5 (Eq. (67)). The 
solution for this case is 
 

  C(x,t) = Ci + (Cb −Ci )A(x,t)+CoB(x,t),  (86) 
 
where 
 

  

A(x,t) = 1
2

 erfc 
x − ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 + 1

2
exp

ux
Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc 

x + ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  (87) 

 

  

B(x,t) = exp(−λt) 
1
2

exp
(u −κ )x

2Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc

x −κ t

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪
 

+ 1
2

exp
(u +κ )x

2Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc 

x +κ t

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪

 

(88)

 

 
and κ as given by Eq. (71). 

Case B6. Finite domain with uniform initial concentration, 
f(x) = 0, a first-type inlet condition, and no zero- or first-order 
production or degradation processes. The inlet condition is the 
same as for Case A1 (Eq. (57)), i.e., a pulse type application 
with constant Co. The solution is (Cleary and Adrian, 1973): 
 

  

C(x,t)
C0

=1−

2βm sin
βmx

L
⎛
⎝⎜

⎞
⎠⎟

exp
ux

2Dx
− u2t

4Dx
−
βm

2 Dxt

L2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

βm
2 + uL

2Dx

⎛

⎝⎜
⎞

⎠⎟

2

+ uL
2Dx

m=1

∞
∑ ,  (89) 

 
where the eigenvalues βm are the positive roots of 
 

  
mβ  cot( mβ ) + uL

2Dx
= 0.  (90) 

 
As for Case A6, this series solution converges very slowly 
when advective transport dominates dispersion. For conditions 
given by (74), the solution is accurately approximated by the 
much more convenient (van Genuchten and Alves, 1982): 
 

  

C(x,t)
Co

 = 1
2

erfc 
x − ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 + 1

2
 exp

ux
Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc 

x + ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 + 1
2

 2 + u(2L− x)
Dx

 + u2t
Dx

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 exp 

uL
Dx

⎛

⎝⎜
⎞

⎠⎟
 erfc 

(2L− x)+ ut

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 − 
u2t
πDx

 exp 
uL
Dx

−
(2L− x + ut 2)

4Dxt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 

(91)

 

 
4.3 Two-dimensional solutions 
 

Case C1. Infinite domain with Dirac-type initial concentra-
tion and no zero- and first-order rate processes. The longitudi-
nal flow direction (x) and the transverse direction (y) are as-
sumed to be infinite. An amount m is released instantaneously 
over the depth the river (0 < z < d) at x = 0 and y = 0. The initial 
condition for this line source problem can be written as 
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g(x, y) = m

d
 δ (x, y)  (92) 

 
in which the Dirac delta function (δ) has the dimension of L-2. 
The analytical solution for the concentration can be found with 
the product rule as 
 

  

C(x, y,t) = 
m

4πdt Dx Dy

 exp − 
(x − ut)2

4Dxt
 − y2

4Dyt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (93) 

 
Arbitrary initial profiles can be viewed as a superposition of 
instantaneous releases and can therefore be obtained by inte-
grating the analytical solution over time (see also Cases A0 and 
B0). 

Case C2. Infinite domain with a continuous line source at x 
= 0 and y = 0 from which a nonreactive constituent is released 
at a rate of Wo (MT-1). The steady-state solution is given by 
(Sayre, 1973) 
 

  

C(x, y) = oW
2πd Dx Dy

 exp 
ux

2Dx

⎛

⎝⎜
⎞

⎠⎟
 0K  

u

4Dx

x2

Dx
+ y2

Dy

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  (94) 

 
where K0[ ] is the zero-order modified Bessel function of the 
second kind. If longitudinal dispersion is negligible, the follow-
ing approximate solution may be used 
 

  

C(x, y) =
Wo

2d πuDyx
 exp − 

uy2

4Dyx

⎛

⎝
⎜

⎞

⎠
⎟    

if    
y2Dx
2x  Dy

 << 1   and   x >> 
2Dx

u
.

 

(95)

 

 
Case C3. Semi-infinite longitudinal and finite transverse 

domain having a continuous line source at x = 0 and y = yo (not 
necessarily at y = 0) from which a contaminant is released at a 
rate Wo (MT-1). The steady-state solution is very similar to the 
solution of Case C2; however, part of the contaminant eventual-
ly will reach the banks of the river because of its finite width.  
The mirror-image technique (e.g., Fischer et al., 1979) may be 
used to ensure that the constituent beyond the river bank, as 
predicted with the solution of Case C2 (denoted here as C*) for 
the infinite transverse condition, is reflected back. The solution 
can be written in terms of C* with modified y variable (Sayre, 
1973): 
 

  

C(x, y) = C*(x, y − yo )+
n = 1

∞
∑

C* x, nB − oy  + (−1)n y( ) 
+C* x, − nB − oy  + (−1)n y( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, (96) 

 
where B is the channel width (L), with transverse solution do-
main –B/2 ≤ y ≤ B/2, and n is the number of reflection cycles. 
Usually, a value of 4 or 5 for n yields sufficiently accurate 
results. 
 
Three-dimensional solutions 
 

The governing equation for three-dimensional transport is 
similar as for two-dimensional transport except that a second 
transverse dispersion term with coefficient Dz is included. The 

three-dimensional problem can be readily solved for an infinite 
z direction. 

Case D1. Infinite domain with Dirac-type initial concentra-
tion and a first-type inlet condition with no zero- and first order 
processes. The x, y and z directions are infinite for all practical 
purposes. An amount m is released instantaneously at x = y = z 
= 0. The initial condition for this point source can be written as 
 

  g(x, y,z) = m δ (x, y,z)  (97) 
 
in which the Dirac delta function (δ) now has the dimension of 
L-3. The expression for the concentration follows again from the 
product rule as (Onishi et al., 1981; Sayre, 1973) 
 

  

C(x, y,z;t) = m

8π t πDx Dy Dzt
 

exp − (x − ut)2

4Dxt
− y2

4Dyt
 − 

2z
4Dzt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 

(98)

 

 
Solutions for arbitrary initial profiles can again be obtained by 
integrating the point source solution over time. 

Case D2. Semi-infinite domain with a constant water depth, 
d, for which a nonreactive material is continuously released at a 
rate Wo (MT-1) from a point source at x = 0, y = yo, and z = zo. It 
is also assumed that longitudinal dispersion is negligible (i.e., 
Dx = 0) as compared to advective transport. The steady-state 
solution for this case is (Onishi et al., 1981). 
 

  

C(x, y,z) = oW
4π x Dy Dz

exp −
( y − yo )2u

4Dyx

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪
 

+ exp −
( y + yo )2u

4Dyx

⎛

⎝
⎜

⎞

⎠
⎟
⎫
⎬
⎪

⎭⎪

 • 
m=−∞

∞
∑ exp −

(z − zo − 2md)2u
4Dzx

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

+  exp − 
(z + zo − 2md)2u

4Dzx
 

⎛

⎝
⎜

⎞

⎠
⎟
⎫
⎬
⎪

⎭⎪
.

 

(99)

 

 
Case D3. Semi-infinite domain with the solute initially uni-

formly distributed in a parallelepipedal region with no inflow of 
mass at the upstream boundary. The y and z directions are as-
sumed to be infinite. The problem can be solved with the prod-
uct rule. The longitudinal transport equation, as given by Eq. 
(56), is solved subject to 
 

  

Cx (x,0) = 
 Ci

1/3    x1 < x < x2  

0         elsewhere

⎧
⎨
⎪

⎩⎪
 (100) 

 
and 
 

  x=0+
Cx −ω

Dx
u

 
∂Cx
∂x

⎛
⎝⎜

⎞
⎠⎟

= 0       
∂Cx
∂x

(∞, t) = 0,  (101) 

 
where x1 and x2 are two arbitrary locations between which the 
solute is originally present. The solution can be deduced direct-
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ly from examples A5 and A6 in van Genuchten and Alves 
(1982). The solution for a first-type inlet condition (ω = 0) is 
given by 
 

  

Cx (x,t) =
  Ci

1/3

2
  erfc

x − x2 − ut

4Dxt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
 − erfc

x − x1 − ut

4Dxt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
  

 + exp
ux
Dx

⎛

⎝⎜
⎞

⎠⎟
  erfc

x + x2 + ut

4Dxt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
 − erfc

x + x1 + ut

4Dxt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
  

 

(102)

 

 
whereas the solution for a third-type inlet condition (ω = 1) is 
 

  

Cx (x,t) = 
Ci

1/3

2
  exp

ux
Dx

⎛

⎝⎜
⎞

⎠⎟
  1+ 

u
Dx

(x + x1 + ut)
⎛

⎝⎜
⎞

⎠⎟
 

⎡

⎣
⎢
⎢

⎧
⎨
⎪

⎩⎪
 

• erfc 
x + x1 + ut

4Dxt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− 1 + u
Dx

(x + x2 + ut)
⎛

⎝⎜
⎞

⎠⎟
 erfc 

x + x2 + ut

4Dxt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎤

⎦
⎥
⎥

+ erfc 
x − x2 − ut

4Dxt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
 − erfc

x − x1 − ut

4Dxt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
 

 + 4u2t
πDx

 exp 
ux
Dx

⎛

⎝⎜
⎞

⎠⎟
exp −

(x + x2 + ut)
4Dxt

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

 

− exp −
R(x + x1)+ ut⎡⎣ ⎤⎦

2

4Dxt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎤

⎦

⎥
⎥
⎥

⎫
⎬
⎪

⎭⎪
.

 

(103)

 

 
The solution of the transverse one-dimensional transport 

equation given by Eq. (48) subject to the condition 
 

  

Cy ( y,0) = 
 Ci

1/3    − a < y < a  

0         elsewhere

⎧
⎨
⎪

⎩⎪
and    

∂Cy

∂y
(±∞,0) = 0  (104) 

 
can be readily adopted from the literature (e.g., Eq. [2.15] of 
Crank, 1975):  
 

  

Cy ( y,t) = 
Ci

1/3

2
 erfc y − a

4Dyt
 

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
 −erfc y + a

4Dyt

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.  (105) 

 
The same solution can be used to express Cz in the z-direction 
where, for example, the solute is initially between –b and b. 

The solution of the three-dimensional transport equation 
given by (41) for solution domain {0 < x < ∞, –∞ < y < ∞, –∞ < 
z < ∞, t > 0}, subject to the initial condition 
 

  

C(x, y,z,0) = 
Ci    x1 < x < x2 | y | < a,    | z | < b

0  elsewhere

⎧
⎨
⎪

⎩⎪
 (106) 

 

and for homogeneous boundary conditions can now be written 
as the product of individual solutions as follows 
 

  
C(x, y, z, t) = Cx (x,t) Cy ( y,t) Cz (z,t).  (107) 

 
Case D4. Semi-infinite domain with zero initial concentra-

tion, f(x) = Ci, and a third-type inlet condition. The inlet condi-
tion is of the pulse type with constant concentration Co, i.e., 
 

  

g( y, z, t) = 
Co    | y | < a,    | z | < b,    0 < t ≤ to

0              otherwise.        

⎧

⎨
⎪

⎩
⎪

 
(108)

 

 
The solution for this case is (Leij et al., 1991) 
 

  

C(x, y,z,t) = 
uCo

4
exp(−µτ )

P(t )

t
∫

1

πDxτ
 exp − (x − uτ )2

4Dxτ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

 − u
2Dx

 exp 
ux
Dx

⎛

⎝⎜
⎞

⎠⎟
erfc 

x + uτ
4Dxτ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎫
⎬
⎪

⎭⎪

• erfc 
y − a

4Dyτ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−erfc 

y + a

4Dyτ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

• erfc 
z − b

4Dzτ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−erfc 

z + b

4Dzτ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 dτ

+ γ
2

exp(−µτ )erfc 
uτ − x

4Dxτ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟0

t
∫

+ 1+ (x + uτ )
u

Dx

⎡

⎣
⎢

⎤

⎦
⎥exp 

ux
Dx

⎛

⎝⎜
⎞

⎠⎟
erfc 

x + uτ
4Dxτ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 − 
4u2τ
πDx

 exp − (x − uτ )2

4Dxτ
⎛

⎝
⎜

⎞

⎠
⎟
⎤

⎦
⎥
⎥

dτ ,

 

(109)

 

 
where 
 

  
P(t) =  

0     0 < t ≤ to
t − to     t > to.

⎧
⎨
⎪

⎩⎪
 

(110)
 

 
Here we illustrate a two-dimensional application of Eq. 

(109) involving the injection of a solute over a finite horizontal 
cross-section (–10 ≤ y < 10 m), 0 ≤ z < ∞) of an initially solute 
free river channel or other open surface water body. As before 
we use a mean transport velocity of 1 m s-1, and longitudinal 
(Dx) and lateral (Dy) dispersion coefficients of 5 and 0.1 m2 s-1, 
respectively. Production or decay processes are neglected (µ = γ 
= 0). The two-dimensional (x, y) concentration distribution at 
time 1500 s is shown in Fig. 4. Calculations were carried out 
using the 3DADE code (Leij and Bradford, 1994) within 
STANMOD assuming a = 10 m and b = 1000 m (the latter 
large value ensuring a two-dimensional transport geometry). 

Fig. 5 further shows for this example the concentration dis-
tribution along the longitudinal (x) coordinate in the middle of 
the channel (i.e., for y = z = 0). The width (b) of the solute 
source along the z-coordinate perpendicular to the river surface 
(Eq. (108)) was taken to be very large in this example (1000 
m), thus creating a two-dimensional (x, y) transport geometry. 
Smaller values of the source width, b (e.g., 5 or 2 m) would 
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create a three-dimensional geometry and significantly lower the 
intermediate concentrations in Fig. 4 (between approximately 
200 and 1300 m) because of lateral dispersion away from the 
center line. The same effect would occur if higher values of the 
lateral dispersion coefficient (Dy) were used.  
 

 
 
Fig. 4. Two-dimensional (x, y) concentration distributions at the 
surface of a stream upon continuous injection of a solute having a 
concentration of 10 g/m3 into a cross-section –10 ≤ y ≤ 10 (m), –
1000 ≤ z < 1000 m as obtained with Eq. (109) using the 3DADE 
module within STANMOD (a = 10 m, b = 1000 m, u = 1 m/s, Dx = 
5 m2/s, Dy = Dz = 0.1 cm2/s, µ = γ = 0).  
 

 
 
Fig. 5. Concentration distribution along the longitudinal (x) coor-
dinate in the middle of the stream (y = z = 0) for the problem de-
picted in Fig. 4. 
 

The above example is just one possible scenario for predict-
ing two- and three-dimensional transport in streams and larger 
surface water bodies. We refer to Leij and Dane (1990), Leij et 
al. (1991), Leij and Bradford (1994) and Weerts et al. (1995) 
for many other solutions, including for nonequilibrium 
transport as discussed in Part 2. Many of the solutions are in-
cluded in the 3DADE (Leij and Bradford, 1994) and N3DADE 
(Leij and Toride, 1997) modules within the STANMOD soft-
ware package, which we used for all calculations in this study. 
Fig. 6 gives an overview of the various geometries that can be 
considered with this software for multidimensional transport 
problems. 
 
 

CONCLUDING REMARKS 
 

The solutions in this paper pertain to one-dimensional longi-
tudinal equilibrium transport in streams and rivers, and longitu-
dinal transport and lateral dispersion in rivers and larger surface 
water bodies. This ideal situation generally does not occur in 
streams and rivers because of the presence of relatively immo-
bile or stagnant (dead) zones of water connected to the mean 
stream. Such stagnant zones include pools and eddies along the 
river banks, water isolated behind rocks, gravel or vegetation, 
or relatively inaccessible water along an uneven river bottom. 
Fluvial sediments and more generally the subsurface hyporheic 
zone may also contribute to the presence of such relatively 
stagnant water zones. By providing sinks or sources of solute 
during transport, stagnant water zones typically cause tailing in 
observed concentration distributions, which cannot be predicted 
with the conventional equilibrium ADE formulations. Part 2 of 
this two-part series (van Genuchten et al., 2013) will focus on 
nonequilibrium transport caused by the presence of such stag-
nant water zones (transient storage models), and also includes 
models that consider simultaneous longitudinal advective-
dispersive transport in a river and lateral diffusion into and out 
of the hyporheic zone. Part 2 additionally provides several 
solutions for the transport of solutes involved in consecutive 
decay chain reactions.  
 

 
 
Fig. 6. Available geometries, initial conditions, and inlet boundary 
conditions (BC’s) that can be simulated using the 3DADE module 
within the STANMOD software package. Both transient (time-
dependent) and steady-state (time-independent) problems can be 
considered. 
 

Most of the analytical solutions presented in this part 1 were 
derived from solutions to mathematically very similar problems 
in subsurface contaminant transport. All part 1 solutions have 
been incorporated in the public-domain windows-based 
STANMOD software package (Šimůnek et al., 2000). This 
software package also includes parameter estimation capabili-
ties (e.g., Fig. 2), and hence provides a convenient tool for 
analyzing observed contaminant concentration distributions 
versus distance and/or time.  

While inherently less flexible than more comprehensive nu-
merical models for contaminant transport in streams and rivers, 
we believe that the analytical solutions assembled in this study 
can be very useful for a variety of applications, such as for 
providing initial or approximate analyses of alternative pollu-
tion scenarios, conducting sensitivity analyses to investigate the 
effects of various parameters or processes on contaminant 
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transport in rivers and streams, extrapolating results over large 
times and spatial scales where numerical solutions become 
impractical, serving as screening models, providing benchmark 
solutions for more complex transport processes that cannot be 
solved analytically, and for validating more comprehensive 
numerical solutions of the governing transport equations.   
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