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DESIGN OF A DUAL-CAMERA SYSTEM FOR
PoULTRY CARCASSES INSPECTION

K. Chao, B. Park, Y. R. Chen, W. R. Hruschka, F. W. Wheaton

ABSTRACT. Two dual-camera systems were developed for on-line inspection of poultry carcasses: one to image the front
of the bird and the other to image the back. Each system consists of two identical black and white cameras equipped with
interference filters of 540 nm and 700 nm. Both cameras capture spectral images simultaneously. Object-oriented analysis
was performed to identify the attributes of individual software components and the relationships among these software
components. These individual software components were then organized by the object patterns to form a software
architectural framework for on-line image capture, off-line development of classification models, and on-line
classification of carcasses into wholesome and unwholesome categories. Model development and testing was performed
on 331 chickens independently classified by a veterinarian. For off-line model development, the accuracies for
differentiating between wholesome and unwholesome carcasses were 96.2% and 88.5% at 540 nm and 700 nm,
respectively, for the front images and 95.7% and 85.1% at 540 nm and 700 nm, respectively, for the back images. On-line
classification for 128 new samples combined the filter information within each system, using selected neural network
models. The front imaging system gave accuracies of 91%, 98% and 95% for normal, abnormal and combined carcasses,

respectively. The back imaging system gave 84%, 100% and 92%.
Keywords. Chicken, Computer graphics, Food safety, Inspection, Real-time system, Machine vision.

uring the last three decades, poultry production

has greatly increased and the processing speed at

slaughter plants has tripled (USDA, 1996). Due

to massive production of poultry and the
inherent variability and complexity in individual birds,
there are great challenges for further improvement of the
existing organoleptic inspection methods. Currently,
individual carcasses are visually inspected by federal
inspectors at poultry processing lines. The visual bird-by-
bird inspection is labor intensive and prone to human error
and variability. Development of high speed and reliable
inspection systems to ensure safe production of poultry
during post-harvest processing has become an important
issue, as the public is demanding assurance of better and
safer food.

Machine vision techniques are useful for the agricultural
and food industries, particularly in grading and inspection
(Daley et al., 1994; Miller and Delwiche, 1989; Precetti
and Krutz, 1993; Sakar and Wolfe, 1985; Tao et al., 1990).
Machine vision is the technology that provides automated
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production processes with vision capabilities when the
majority of inspection tasks are highly repetitive, extremely
boring, and their effectiveness depends on the efficiency of
the human inspectors. Even though machine vision has
evolved into a promising technology for agricultural
product applications, among the many factors to be
considered in on-line application are processing speed,
reliability, and applicability for industrial environments. To
design an effective vision system for on-line operations,
vision hardware functionality need to be considered during
the development of vision system software.

Spectral imaging involves measuring the intensity of
diffusely reflected light from a surface at several
wavelengths. The reflected light contains information about
absorbers near the surface of the material. Using intensities
recorded in six different spectral bands (540, 570, 641, 700,
720, and 847 nm), the Instrumentation and Sensing
Laboratory (ISL) located in Beltsville, Maryland, has
developed several spectral image algorithms to
differentiate wholesome carcasses from unwholesome
carcasses (Park et al., 1996). In this case, comparison of
images at two or more wavelengths provides robustness for
classifying spectral images. Since the process of analyzing
a digital image to identify certain objects is inherently
computationally intensive, it is advantageous optically pre-
process the image, extracting only those wavelengths
which provide useful information.

A pilot-scale facility at ISL was constructed specifically
for developing the machine vision based systems for on-
line poultry inspection. The facility has been utilized for
evaluating individual vision components and testing the
workability of spectral imaging algorithms (Park and Chen,
1998).

The objective of this research was to design a real-time
machine vision system, including vision hardware and
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software components integration, which can be adapted to
the on-line processing at poultry slaughter plants. Object-
oriented analysis was employed to identify the system’s
responsibility for individual components. A real-time
machine vision inspection system (MVIS) was
implemented in the pilot-scale facility. The system’s
performance was optimized for on-line classification of
normal and abnormal chicken carcasses.

MATERIAL AND METHODS
SAMPLE COLLECTION

A total of 331 chicken carcasses (167 normal,
54 airsacculitis, 51 septicemia, 26 ascites, and 33 cadaver)
were sampled from a poultry processing plant in Maryland
over a four-day period in March and a two-day period in
April of 1999. The conditions of these carcasses were
identified on the plant site by a Food Safety and Inspection
Service (FSIS) veterinarian. The carcasses were tagged
according to the condemnation conditions and placed in
plastic bags to minimize dehydration. Then the bags were
placed in coolers, filled with ice, and transported to ISL for
the experiments.

DUAL-CAMERA SYSTEMS

Two dual-camera systems were used, one to image the
front of the bird and the other to image the back of the bird.
For each system, two identical black and white progressive
scan cameras (TM-9701, PULNIX Inc., Sunnyvale,
California) were used to capture spectral images
simultaneously. Each camera was equipped with an optical
interference filter (Omega Optical, Inc., Brattleboro,
Vermont), at a wavelength of 540 nm or 700 nm, resulting
in four images for each bird (front/back, 540/700). Each
filter had a 20-nm bandwidth. These two wavelengths had
been found previously to give good discrimination results
(Park et al., 1996). The size of the CCD sensor in each
camera was 6.6 x 8.8 mm (2/3 in. format). The image
sensor had 768 (horizontal) x 484 (vertical) active picture
elements with an actual resolution of 570 horizontal TV
lines. Each camera had a full-frame shutter with
asynchronous reset and an interline transfer CCD that
provided high speed electronic shuttering to capture images
of moving objects. Identical 17-mm focal length C-mount
lenses (Xenoplan, Schneider Inc., Kreuznach, Germany)
were attached to each camera. Two cameras were touching
each other with the lens centers 5.3 cm apart. The cameras
were angled slightly to achieve maximal image
overlapping. The distance between camera lens and object
(the surface of chicken body in the shackle) was
approximately 36 cm.

Four halogen lamps (150 W each, USHIO Inc., Tokyo,
Japan) with diffusing reflectors (PQ300, Regent Lighting
Corp., Burlington, North Carolina) illuminated the poultry
carcasses. The four adjustable lamp/reflector assemblies
were positioned at the corners of a 30 cm sided square
slightly behind the pair of cameras, at 45° angles to the
poultry carcass, giving diffused front lighting. The distance
from each lamp to the carcass was 50 cm.

For image capture, the IC-RGB frame grabber (Imaging
Technology Inc., Bedford, Massachusetts) was configured
to operate in a 24-bit true color mode. In this mode, the
three 8-bit channels (i.e., red, green, and blue) could be
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used separately to connect up to three monochrome
cameras. The green and blue channels were used in this
study to carry image data from the dual-wavelength
cameras.

SYSTEM SOFTWARE DESIGN

The machine vision inspection system (MVIS) provides
an automated process for on-line poultry carcass
inspection. To facilitate the system design, object-oriented
analysis (Booch, 1994) was initiated by considering the
hardware on which the MVIS must execute. The following
strategic decisions were made to expose the issues of the
software analysis and design.

1. Host computer equipped with a Pentium II-class

processor running Windows NT 4.0 (Microsoft
Corp., Redmond, Washington) was used.

2. Images were acquired by a PCI bus image capture
card, then passed through to the PC host memory.

3. An on-board (frame grabber) timer was utilized to
synchronize the dual-wavelength cameras.

4. Two magnetic proximity sensors (MLC-K60,
MagneLink, Hillsbore, Oregon) were used to
trigger on-line image capture for off-line training of
classification models.

5. A photoelectric proximity sensor (PZ-42, Keyence,
Saddle Brook, New Jersey) was used to trigger on-
line image capture for on-line classification.

6. Sensor digital inputs were provided through a
digital I/O card (P1O-24, Keithley MetraByte,
Taunton, Massachusetts), accessible via memory-
mapped [/O.

7. The image display device was a PCI bus video card
with 8 MB of video memory.

Based on the availability of these hardware components
(fig. 1), the MVIS requirements are specified. The MVIS
has three primary functions: real-time image acquisition,
processing, and on-line classification of poultry carcasses.

CLASS DIAGRAM DESIGN

The goal of object-oriented design is to decompose a
programming task into data types or classes and to define
the functionality of these classes. Seven classes developed
for the project included Cue, Frame Grabber, Device-
Independent Bitmaps (DIBs), Chicken, Neural Network
Classifier, Document, and View were extracted from the
requirements. Within a given inspection cycle, Cues
control the action of a frame grabber. Cues are temporal
objects, changing state with time. The Frame Grabber is a
foundation class used to acquire images from the dual-
camera and transfer image data to the host PC memory.
The DIBs provide a depository for the raw image data.
Chickens are the participants in the vision inspection
system. The attributes (edge position, etc.) and methods
(segmentation, etc.) are utilized to represent individual
chickens. Documents hold the processed data. Views are the
front-end presentation of the data.

A class diagram is a graphical presentation method to
effectively convey design information. The class diagram
for the MVIS is illustrated in figure 2. Classes are drawn as
boxes, which contain the class name, the names of data
fields and operations. Three kinds of connections,
aggregation, association, and inheritance, connect the
classes. The aggregation relationship occurs when a class
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Figure 1-Pilot-scale facility with two dual-camera vision systems.
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Figure 2-The class diagram for the machine vision inspection system
(MVIS).

contains objects of another class. It is denoted by a line
with a diamond at the larger class. The association
relationship exists between two classes if one uses the
other to carry out its tasks. The association relationship is
denoted by a line with a circle at the using class.
Inheritance is the “is-a” relationship. If every member of a
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class logically conforms to another class but has additional
special attributes, then the first inherits from other. For a
class inheriting from a base class, an arrow is drawn from
the base class to the derived class.

Cues are time sensitive. Each Cue has a time interval
during which it is active. The Frame Grabber uses the cue
as an indicator to trigger the image acquisition process
when an object is passed through the sensors. The main
responsibility of a frame grabber is to provide a data
structure for acquisition of images. This structure includes
the location of the data (memory address), the size of the
image (number of pixels), its data type (8-bit byte, 16-bit
word, or floating point), and number of frames. A DIB is a
data field representing the raw image data cached in the
frame grabber. Each Chicken has two DIBs to represent
image data acquired through two interference optical filters
at wavelengths of 540 nm and 700 nm. The attributes of
Chicken are defined to describe the intensity characteristics
of chicken carcasses. The Blockinfo is a user-defined data
type, which contains quantitative information such as
averaged gray intensity and printable area of individual
blocks. Neural Network Classifier is a derived class from
Chicken. Neural Network Classifier inherits information
such as number of blocks, averaged gray intensity directly
from Chicken. These attributes are the inputs to the
classifier. The outputs from Neural Network Classifier are
provided to Document. Document provides an important
operation called serialization to the processed data. The
serialization process can save the persistent objects,
interrupt the computation, and reload the same data at a
later time. View displays the data stored in Document. The
Document-View structure is directly derived from
Microsoft Foundation Class Libraries (Microsoft Corp.,
Redmond, Washington).
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Based on the analysis and design, the MVIS was
implemented in the Visual C++ (Microsoft Corp.,
Redmond, Washington) environment.

OPERATION FLOW

On-line data acquisition occurs for one of two purposes:
off-line model development and on-line classification.
When acquiring images for off-line model development, a
stainless steel plate holding a magnet is hung on each
shackle suspending a chicken carcass, marking it for image
acquisition and indicating the condition of the chicken. The
position of the magnet (high or low) indicates whether the
chicken is normal or abnormal. The upper of the two
magnet sensors detects the magnet for a marked normal
carcass. The lower magnet detects a marked abnormal
carcass. These two magnet sensors are connected to a
digital I/O board, triggering image capture. When
acquiring images for testing on-line classification, chickens
are hung in a known normal/abnormal sequence, without
magnetic markers, on the pilot-scale line and a
photoelectric proximity sensor, also connected to the digital
I/0O board, triggers image capture when a shackle is sensed.

The real-time image acquisition process uses Cue and
Frame Grabber to trigger and synchronize image
acquisition. Cue monitors the input status of the digital I/O
board and sends a control message to the function level
drivers running the frame grabber to initiate an interrupt to
the on-board timer to synchronize the dual-wavelength
cameras. The images are acquired from the cameras and
transferred to the host CPU memory.

The image processing is performed in real-time (four
images per chicken, front/back, 540/700 nm). The size of
an original spectral image acquired by the camera is 512 x
480 pixels. The image is reduced to a size of 256 x
240 pixels by extracting every other pixel from the odd
lines of the interlaced image. The reduction allowed a
shorter processing time, and permitted simultaneous
display of two images. The reduced image (object) is
segmented from the background using thresholding values
of 40 for the 540 nm images and 50 for the 700 nm. Pixels
below the threshold were set to zero, and those above
retained their original grayscale values. A total of 15
horizontal layers (16 horizontal lines of pixels each) are
generated from each segmented image, as shown in
figure 3. For each layer, a centroid is calculated from the
binarized image. Based on these centroids, each layer was
divided into several square blocks with the size of 256
pixels (16 x 16). The numbers of blocks in each layer were
{10, 9, 10, 8,8, 7, 6,6, 5,6, 6,7, 6,6, and 7} top to
bottom, as determined by preliminary studies, for a total of
107 blocks. We call this process “mesh generation.” The
averaged intensity of each block is used as the input data to
the neural network models. Note that for a very small
chicken, the edge blocks could contain several background
pixels, passing chicken size information on to the neural
net in the form of lowered average intensity.

During off-line training of the backpropagation neural
network models, parameters (including weights and biases
from the optimized neural network models) are saved in
the ASCII data format. Two transfer functions, sigmoid and
hyperbolic tangent, are implemented for the on-line
classification process. During the on-line classification
mode, the photoelectric sensor detects the chicken carcass
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position along the path of the shackle. Cue then triggers the
image acquisition and the image data is passed through the
host CPU memory for processing. Immediately following
the on-line image processing, one-pass forward mapping of
the neural network application is performed to classify the
carcasses as wholesome or unwholesome.

PROTOTYPE EVALUATION PROTOCOL

An in-house pilot-scale (60 birds/min) poultry
processing line was used to test the dual-camera systems.
Images were taken at both 540 and 700 nm wavelengths,
one pair of the front, and one pair of the back of each
chicken carcass. A total of 203 images (table 1), which
were acquired over the four-day period in March 1999, was
used to train and select the best neural network models for
off-line classification of poultry carcasses. Each feed-
forward-back-propagation neural network is configured
with 107 input nodes, 10 nodes in one hidden layer, and
two output nodes. (The number of hidden nodes follows
the standard practice of using approximately the square
root of the number of input nodes.) The output nodes’
target output is (0 1) or (1 0) depending on whether the
sample was identified normal or abnormal by the
veterinarian. The analysis method starts with splitting the
data into three sets: training (101), testing (55) and
validation (47). The neural network models are trained on
the training set. The testing set is used to decide which
network model and how much training is optimal. The
testing set is predicted every 200 iterations of the training
cycle, and the network weights are saved if the
classification results have been improved. Training is
always stopped after 15,000 iterations. The validation set is
then used to measure the performance of each optimized
model on independent data. The software used for neural
network model development was NeuralWorks
Professional II/Plus (NeuralWare, Pittsburgh,
Pennsylvania). Two back-propagation rules (delta and
norm-cum-delta) and two transfer functions (Sigmoid and
Tanh) were used for a total of four models (table 2) for
each training/testing/validation split of the data. Best
models for classification of the front and back of poultry
carcasses were selected based on performance evaluation

Table 1. Number of spectral images

Date Normal Abnormal
Model 11/3/99 20 28
develop- 16/3/99 25 28
ment 17/3/99 27 28
18/3/99 28 19
Total 100 103 203
Model 21/4/99 32 30
testing 22/4/99 35 31
Total 67 61 128
Grand total 331
Table 2. Neural network models
Model Learning Rule Transfer Function
1 Delta Tanh
2 Delta Sigmoid
3 Norm-Cum-Delta Tanh
4 Norm-Cum-Delta Sigmoid
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on the validation set for both normal and abnormal
samples.

Samples acquired over the two-day period in April 1999
were used for on-line classification testing of the MVIS. A
total of 128 poultry carcasses (67 normal and 61 abnormal)
were tested (table 1). Neural network models previously
selected from off-line training were implemented to predict
the previously unseen poultry carcasses.

RESULTS AND DISCUSSION
OPERATIONS OF MVIS

MVIS was evaluated in on-line operation conditions. It
is expected that the dual-wavelength vision system can
capture the same chicken simultaneously without any
disturbance from other chicken samples on the line. The
minimum distance between chickens was 15 cm. Figure 3
illustrates typical images during real-time image processing
at 540 nm and 700 nm for both front and back views.
Objects (chicken carcasses) were clearly segmented from
background. Most blocks were generated inside the
boundary of the chicken body as shown in figure 3. Image
processing time ranged from 150 to 170 ms, depending on
the type of computer used. However, the two images
captured at 540 nm and 700 nm were not identical, in the
sense of pixel-to-pixel correspondence. This problem
occurred because of the configuration of cameras.

Figure 4 illustrates the real-time image processing
during real-time classification for the back of chicken
carcasses. On-line neural network classification that

#1¢ MACHINE YISION INSPECTION SYSTEM - MYIS
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Figure 3-Real-time image processing form the MVIS. Centroid and
mesh generation during image capture for off-line training. (a) front
at 540 nm, (b) front at 700 nm, (c) back at 540 nm, (d) back at
700 nm.
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Figure 4-MVIS running for on-line classification of back of chicken carcass predicted to be normal.
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utilized inputs from real-time mesh generation was running
during the whole process without losing a single frame.
Real-time display of processed images also performed
reliably. The Document/View structure is used in the
visual-programming environment. As shown in figure 4,
a document class holds processed information with one
view displaying that information as two images and
another presenting it as a text. The on-line classification
times were counted from 200 to 220 ms for front views and
180 to 200 ms for back views, indicating an achievable
inspection rate of 180 chickens per minute by the MVIS.
(The front PC CPU was 200 MHz; the back was
233 MHz.)

OFF-LINE TRAINING OF NEURAL NETWORK MODEL

The four neural network models were tested to select the
optimum to use for on-line classification of poultry
carcasses. The test results for each model using the front
spectral images at 540 nm are shown in table 3. The
fraction predicted correctly for testing and validation are
included for each of the four models, with the chicken
carcasses from normal and abnormal subsets of the testing
and validation sets, and from the normal and abnormal
combined. (Training results always approach 1.000 and are
not reported.) The classification accuracy to identify
normal carcasses was 100% for the four models for both
testing and validation data sets. The separation of the
abnormal chickens was not as good (87-97%). These

—p—

Table 4 shows corresponding results using front spectral
images at 700 nm. The results clearly indicated that Model
3 was best with 88% correct on the validation set with the
combined samples and 83% on the abnormal. It is expected
that the testing success rate should be higher than that of
the validation. However, as shown in table 4, the validation
success rates for models 1, 2, and 4 are better than that of
testing. We have no explanation for this, but it could be
caused by insufficient testing, or by the front 700 nm
images being more uniform in the validation set.

Table 5 shows the success rate when the back spectral
images at 540 nm are utilized as inputs to the four models.
The results indicated that Model 1 was best, giving an
accuracy of 95% for the combined validation set, and 89%
for the abnormal validation set. Table 6 shows the
comparison of the four models using back spectral images
at 700 nm. Model 1 was selected because validation
accuracy for the combined carcasses was highest, and the
separate normal and abnormal classifications were high.

ON-LINE CLASSIFICATION OF POULTRY CARCASSES

For each combination of 540/700 nm and front/back,
the best model from the offline training was chosen
(table 7). Then a separate online test result was made for
the front and for the back poultry carcasses. In each case,

Table 5. Fraction predicted correctly during off-line training
using back spectral images at 540 nm

results do not show one model as conclusively better, but Carcasses
they do show the .c‘oml.)med accuracy to .be on the order of Model Nogmal Abnormal Total
95% correct classification for the validation set. For the on- '
line classification test, Model 2 was chosen arbitrarily over ! 1.000 0.964 0.981 Testing
1.000 0.895 0.957 Validation
the equal-result Model 4.
2 0.963 0.964 0.964 Testing
Table 3. Fraction predicted correctly during off-line training 0.821 0.895 0.851 Validation
ing fi li 4
using front spectral images at 540 nm 3 0.926 0971 0.945 Testing
Carcasses 0.929 0.895 0.915 Validation
Model Normal Abnormal Total 4 0.963 0.929 0.945 Testing
1 1.000 0.971 0.984 Testing 0.929 0.842 0.894 Validation
1.000 0.875 0.942 Validation
2 1.000 0.971 0.984 Testing Table 6. Fraction predicted correctly during off-line training
1.000 0917 0.962 Validation using back spectral images at 700 nm
Carcasses
3 1.000 0.971 0.984 Testing
1.000 0.875 0.942 Validation Model Normal Abnormal Total
Coam e e e gm0 om
1.000 0.917 0.962 Validation ’ ’ ’
2 0.926 0.857 0.891 Testing
Table 4. Fraction predicted correctly during off-line training 0.857 0.789 0.830 Validation
using front spectral images at 700 nm 3 0.963 0.893 0.927 Testing
Carcasses 0.857 0.789 0.830 Validation
Model Normal Abnormal Total 4 0.926 0.927 0.927 Testing
1 0.889 1.000 0.952 Testing 0.786 0.895 0.830 Validation
0.929 0.708 0.827 Validation
2 0.889 1.000 0.952 Testing Table 7. Models used in on-line classification testing
0.929 0.750 0.846 Validation Wavelength (nm) Model
3 0.963 0914 0.935 Testing Front 540 2
0.929 0.833 0.885 Validation 700 3
4
0.778 0.971 0.887 Testing Back 540 1
0.929 0.750 0.846 Validation 700 1
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Table 8. Fraction predicted correctly during
on-line classification testing

Normal Abnormal Total

Day 1 Front 0.87 1.00 0.93
Back 0.68 1.00 0.84

Day 2 Front 0.96 0.97 0.97
Back 1.00 1.00 1.00

Day 1 + Day 2 Front 0.91 0.98 0.95
Back 0.84 1.00 0.92

the 540 and 700 nm results were combined using an AND
operation to give a single prediction. That is, a carcass is
predicted normal only if the data from both filters result in
normal prediction. Table 8 shows these final online test
results. We have separated it into day 1 and day 2 because
of a problem with the back lighting, noticed and corrected
at the end of the first day. For testing unwholesome
carcasses, nearly perfect scores (only one unwholesome
carcass was misclassified as wholesome) were achieved.
However, the classification accuracy on the first day for
wholesome carcasses was 87% for the front and only 68%
for the back. The back light correction accounts for part of
the increase in performance from day one to day 2.

In general the results for the online test are better than
expected, especially the remarkable 100% for the back
images on the second day. This is probably because the
online classification chickens formed a sample set with
characteristics closer to the average of those of the offline
training set. That is, the range of intensities within
corresponding blocks in the normal (or abnormal) set was
probably smaller in the on-line classification. Also, the
means of normal and abnormal images were at least as far
(if not further) apart in the on-line set.

SUMMARY AND CONCLUSIONS

Dual-camera systems were designed specifically for on-
line poultry inspection. Object-oriented analysis was
performed to integrate vision hardware components with
the inspection algorithm development. The software for the
machine vision inspection system (MVIS) was
implemented in the Microsoft Visual C++ environment.
Operations including real-time imaging acquisition,
processing, off-line model development, and on-line
classification were tested in a pilot-scale facility using two
dual-camera systems: one for the front and the other for the
back of poultry carcasses. Based on these tests, the
following conclusions were made.

1. The hardware and software were tightly integrated.
The real-time image acquisition and processing
occurred without failures, showing the system to be
reliable.
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2. The inspection algorithm was effective for off-line
classification of poultry carcasses. Combined
(normal and abnormal) accuracies for classification
of carcasses were 96.2% and 88.5% at 540 nm and
700 nm, respectively, for the front images and
95.7% and 85.1% at 540 nm and 700 nm,
respectively, for the back images.

3. Models developed were successful for on-line
classification of samples collected a month later,
showing model development to be robust.
Classification accuracies were 95% for the front
images and 92% for the back.

4. The design method delivered a successful system
that is now ready to be tested in in-plant trials.

In this report, training and testing were based on the
images attained on an in-house pilot scale poultry line. The
system was designed to be easily transported to and placed
at a commercial poultry processing line.
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